login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of 0..floor((n*6-1)/2) on even squares of an n X 6 array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing.
1

%I #8 Jul 23 2018 06:16:55

%S 1,2,12,29,189,458,2988,7241,47241,114482,746892,1809989,11808549,

%T 28616378,186696108,452432081,2951712081,7153064162,46667304972,

%U 113091730349,737821743309,1788008493098,11665145978028,28268860698521

%N Number of permutations of 0..floor((n*6-1)/2) on even squares of an n X 6 array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing.

%C Column 6 of A215788.

%H R. H. Hardin, <a href="/A215784/b215784.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 16*a(n-2) - 3*a(n-4).

%F Empirical g.f.: x*(1 + 3*x)*(1 - x - x^2) / (1 - 16*x^2 + 3*x^4). - _Colin Barker_, Jul 23 2018

%e Some solutions for n=4:

%e ..0..x..1..x..3..x....0..x..1..x..3..x....0..x..1..x..2..x....0..x..1..x..2..x

%e ..x..2..x..5..x..8....x..2..x..5..x..7....x..3..x..4..x..6....x..3..x..4..x..5

%e ..4..x..6..x..9..x....4..x..6..x..9..x....5..x..7..x..9..x....6..x..7..x..9..x

%e ..x..7..x.10..x.11....x..8..x.10..x.11....x..8..x.10..x.11....x..8..x.10..x.11

%Y Cf. A215788.

%K nonn

%O 1,2

%A _R. H. Hardin_, Aug 23 2012