login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378575
G.f. satisfies A(x) = x + x*A(A(A(A(A(x))))), so that this sequence shifts left under the 5th self-COMPOSE.
2
1, 1, 5, 45, 545, 7945, 132005, 2423501, 48224129, 1026722489, 23177970949, 551133715197, 13734995332769, 357361170997321, 9677345660994725, 272075021315860781, 7925076713952829697, 238747406787319312025, 7427421640015549840133, 238301672444134819413533, 7875799810817511976148129
OFFSET
1,3
COMMENTS
Conjecture: a(n) == 1 (mod 4) for n >= 1.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas, wherein A^n(x) denotes the n-th iteration of A(x) with A^0(x) = x.
(1) A(x) = x + x*A^5(x).
(2) A(x) = A(A(x))/(1 + A^6(x)).
(3) A(x) = Series_Reversion( x/(1 + A^4(x)) ).
(4) A(x) = Sum_{n>=0} Product_{k=0..n} A^(4*k)(x).
(5) A^n(x) = A^(n+1)(x) / (1 + A^(n+5)(x)) for n >= 0.
(6) A^n(x) = x*Product_{k>=0..n-1} (1 + A^(k+5)(x)) for n >= 1.
EXAMPLE
G.f.: A(x) = x + x^2 + 5*x^3 + 45*x^4 + 545*x^5 + 7945*x^6 + 132005*x^7 + 2423501*x^8 + 48224129*x^9 + 1026722489*x^10 + ...
where A(x) = x + x*A^5(x).
RELATED SERIES.
A^2(x) = A(A(x)) = x + 2*x^2 + 12*x^3 + 116*x^4 + 1460*x^5 + 21820*x^6 + 369140*x^7 + 6873732*x^8 + 138390908*x^9 + 2976373452*x^10 + ...
A^3(x) = A(A(A(x))) = x + 3*x^2 + 21*x^3 + 219*x^4 + 2885*x^5 + 44483*x^6 + 770269*x^7 + 14610939*x^8 + 298729077*x^9 + 6510526915*x^10 + ...
A^4(x) = A(A(A(A(x)))) = x + 4*x^2 + 32*x^3 + 360*x^4 + 4984*x^5 + 79648*x^6 + 1417768*x^7 + 27500512*x^8 + 572918728*x^9 + 12690763632*x^10 + ...
A^5(x) = A(A(A(A(A(x))))) = x + 5*x^2 + 45*x^3 + 545*x^4 + 7945*x^5 + 132005*x^6 + 2423501*x^7 + 48224129*x^8 + 1026722489*x^9 + ...
...
By formula (4),
A(x) = x + x*A^4(x) + x*A^4(x)*A^8(x) + x*A^4(x)*A^8(x)*A^12(x) + x*A^4(x)*A^8(x)*A^12(x)*A^16(x) + ...
Examples of formula (5), A^n(x) = A^(n+1)(x)/(1 + A^(n+5)(x)):
n=0: x = A(x)/(1 + A(A(A(A(A(x)))))),
n=1: A(x) = A(A(x))/(1 + A(A(A(A(A(A(x))))))),
n=2: A(A(x)) = A(A(A(x)))/(1 + A(A(A(A(A(A(A(x)))))))),
n=3: A(A(A(x))) = A(A(A(A(x))))/(1 + A(A(A(A(A(A(A(A(x))))))))),
...
Examples of formula (6), A^n(x) = x*Product_{k>=0..n-1} (1 + A^(k+5)(x)):
n=1: A(x) = x*(1 + A(A(A(A(A(x)))))),
n=2: A(A(x)) = x*(1 + A(A(A(A(A(x))))))*(1 + A(A(A(A(A(A(x))))))),
n=3: A(A(A(x))) = x*(1 + A(A(A(A(A(x))))))*(1 + A(A(A(A(A(A(x)))))))*(1 + A(A(A(A(A(A(A(x)))))))),
...
PROG
(PARI) /* By definition, A(x) = x + x*A(A(A(A(A(x))))) */
/* Define the n-th iteration of function F: */
{ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
{a(n) = my(A=x); for(i=1, n, A = x + x*ITERATE(5, A, n)); polcoef(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 01 2024
STATUS
approved