login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196523
G.f. satisfies A(x) = x + x*A(A(A(A(x)))).
3
1, 1, 4, 28, 262, 2944, 37666, 532276, 8151322, 133562194, 2320621222, 42475263136, 814932467836, 16326188799508, 340479903535258, 7373196169450312, 165453350568966163, 3840489521467649158, 92072430090995120044, 2276807696679096394552
OFFSET
1,3
COMMENTS
Conjecture: a(n) == 1 (mod 3) for n >= 1. - Paul D. Hanna, Dec 01 2024
LINKS
FORMULA
G.f.: A(x) = A(A(x))/(1 + A(A(A(A(A(x)))))).
G.f.: A(x) = Series_Reversion[ x/(1 + A(A(A(x)))) ].
G.f.: A(x) = x*F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n+3)) for n>0 with F(x,0)=1; further, x*F(x,n) is the n-th iteration of A(x).
G.f. satisfies: A(x) = Sum_{n>=0} Product_{k=0..n} A_{3*k}(x), where A_n(x) denotes the n-th iteration of A(x) with A_0(x)=x.
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 28*x^4 + 262*x^5 + 2944*x^6 + 37666*x^7 +...
Given g.f. A(x), A(x)/x is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*D;
B = A*(1 + x*E);
C = B*(1 + x*F);
D = C*(1 + x*G);
E = D*(1 + x*H); ...
The solution to the variables in the system of equations are:
A=A(x)/x, B=A(A(x))/x, C=A(A(A(x)))/x, D=A(A(A(A(x))))/x, etc.,
where iterations begin:
A(x) = x + x^2 + 4*x^3 + 28*x^4 + 262*x^5 + 2944*x^6 + 37666*x^7 +...
A(A(x)) = x + 2*x^2 + 10*x^3 + 77*x^4 + 760*x^5 + 8846*x^6 + 116140*x^7 +...
A(A(A(x))) = x + 3*x^2 + 18*x^3 + 153*x^4 + 1608*x^5 + 19566*x^6 +...
A(A(A(A(x)))) = x + 4*x^2 + 28*x^3 + 262*x^4 + 2944*x^5 + 37666*x^6 +...
A(A(A(A(A(x))))) = x + 5*x^2 + 40*x^3 + 410*x^4 + 4930*x^5 + 66530*x^6 +...
A(A(A(A(A(A(x)))))) = x + 6*x^2 + 54*x^3 + 603*x^4 + 7752*x^5 + 110484*x^6 +...
ALTERNATE GENERATING METHOD.
The g.f. A(x) equals the sum of products of {3*k}-iterations of A(x):
A(x) = x + x*A_3(x) + x*A_3(x)*A_6(x) + x*A_3(x)*A_6(x)*A_9(x) + x*A_3(x)*A_6(x)*A_9(x)*A_12(x) +...+ Product_{k=0..n} A_{3*k}(x) +...
where A_n(x) = A_{n-1}(A(x)) is the n-th iteration of A(x) with A_0(x)=x.
Related expansions.
x*A_3(x) = x^2 + 3*x^3 + 18*x^4 + 153*x^5 + 1608*x^6 + 19566*x^7 +...
x*A_3(x)*A_6(x) = x^3 + 9*x^4 + 90*x^5 + 1026*x^6 + 13059*x^7 +...
x*A_3(x)*A_6(x)*A_9(x) = x^4 + 18*x^5 + 279*x^6 + 4320*x^7 +...
x*A_3(x)*A_6(x)*A_9(x)*A_12(x) = x^5 + 30*x^6 + 675*x^7 +...
MATHEMATICA
Nest[x + x (# /. x -> # /. x -> # /. x -> #) &, O[x], 30][[3]] (* Vladimir Reshetnikov, Aug 08 2019 *)
PROG
(PARI) /* Define the n-th iteration of function F: */
{ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}
/* A(x) results from nested iterations of shifted series: */
(PARI) {a(n)=local(A=x); for(i=1, n, A=x+x*ITERATE(4, A, n)); polcoeff(A, n)}
(PARI) {a(n)=local(A=x); for(i=1, n, A=x+x*sum(m=1, n, prod(k=1, m, ITERATE(3*k, A, n)))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A152410 A177403 A360775 * A260775 A292810 A368892
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2011
STATUS
approved