login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196526
a(n) is the number of ways the n-th prime number prime(n) can be written as sum of coprime b and c, in which b is a positive even number and c is an odd number that is -1 or greater, and all odd prime factors of b and c are less than or equal to sqrt(prime(n)).
4
2, 1, 1, 3, 2, 3, 2, 1, 5, 5, 4, 4, 3, 4, 8, 8, 7, 7, 7, 7, 8, 7, 8, 7, 6, 6, 7, 7, 7, 12, 13, 12, 11, 12, 10, 10, 11, 11, 16, 18, 18, 18, 17, 18, 18, 17, 16, 15, 16, 17, 15, 18, 18, 18, 18, 17, 16, 18, 17, 16, 24, 24, 23, 23, 23, 23, 24, 23, 24, 24, 25, 32, 33, 34, 33, 36, 34, 35, 33, 35, 33, 32, 35, 34, 33, 33, 34, 33, 35, 34, 31, 32, 30, 35, 35, 34, 32, 32, 45
OFFSET
2,1
COMMENTS
All terms are positive integers, no zero term.
The Mathematica program generates first 99 items and the function AllSplits[n_] can be used to generate a(n) for any n > 1.
LINKS
EXAMPLE
n=2: prime(2)=3 = 2 + 1 = 2^2 - 1, so a(2)=2;
n=3: prime(3)=5 = 2^2 + 1, so a(3)=1;
...
n=10: prime(10)=29, int(sqrt(29))=5, 29 = 2+3^3 = 2^2+5^2 = 2^2*5+3^2 = 2^3*3+5 = 2*3*5-1, so a(10)=5.
MATHEMATICA
AllPrimes[k_] :=
Module[{p, maxfactor, pset}, p = Prime[k];
maxfactor = NextPrime[IntegerPart[Sqrt[p]] + 1, -1];
If[maxfactor == -2, pset = {2}, p0 = 2; pset = {2};
While[p0 = NextPrime[p0]; p0 <= maxfactor,
pset = Union[pset, {p0}]]]; pset];
NextIntegerWithFactor[seed_, fset_] :=
Module[{m, a, l, i, fset1}, m = seed - 1;
While[m++; If[Mod[m, 2] == 1, m++]; a = FactorInteger[m];
l = Length[a]; fset1 = {};
Do[fset1 = Union[fset1, {a[[i]][[1]]}], {i, 1, l}];
Intersection[fset1, fset] != fset1]; m];
FactorSet[seed_] :=
Module[{fset2, a, l, i}, a = FactorInteger[seed]; l = Length[a];
fset2 = {}; Do[fset2 = Union[fset2, {a[[i]][[1]]}], {i, 1, l}];
fset2]; SplitPrime[n_, q0_] :=
Module[{p, pset, q, r, rp, fs, rs, qs}, p = Prime[n];
pset = AllPrimes[n]; q = q0;
While[q++; q = NextIntegerWithFactor[q, pset]; r = p - q;
rp = Abs[r]; fs = FactorSet[rp];
rs = Complement[pset, FactorSet[q]];
qs = Intersection[fs,
rs]; (fs != {1}) && (fs != qs) && (q <= (p + 1))]; {p, q, r} ];
AllSplits[n_] :=
Module[{q, ss, spls}, q = 0; spls = {};
While[ss = SplitPrime[n, q]; q = ss[[2]];
If[q <= (Prime[n] + 1), spls = Union[spls, {ss}]];
q < (Prime[n] + 1)]; spls]; Table[
Length[AllSplits[i]], {i, 2, 100}] (* Lei Zhou *)
zhouAbleCount[n_] := Length[Select[Range[-1, Prime[n], 2], GCD[#, Prime[n] - #] == 1 && FactorInteger[#][[-1, 1]] <= Sqrt[Prime[n]] && (IntegerQ[Log[2, Prime[n] - #]] || FactorInteger[Prime[n] - #][[-1, 1]] <= Sqrt[Prime[n]]) &]]; Table[zhouAbleCount[n], {n, 2, 100}] (* Alonso del Arte, Oct 03 2011 *)
PROG
(Haskell)
a196526 n = length [c | let p = a000040 n,
c <- [-1, 1..p-1], let b = p - c,
gcd b c == 1,
a006530 b ^ 2 < p || p == 3, a006530 c ^ 2 < p]
-- Reinhard Zumkeller, Oct 04 2001
CROSSREFS
Cf. A006530 (largest prime factor), A000040.
Sequence in context: A363086 A378881 A060117 * A234504 A112592 A370666
KEYWORD
nonn,easy
AUTHOR
Lei Zhou, Oct 03 2011
STATUS
approved