login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of ways the n-th prime number prime(n) can be written as sum of coprime b and c, in which b is a positive even number and c is an odd number that is -1 or greater, and all odd prime factors of b and c are less than or equal to sqrt(prime(n)).
4

%I #29 Mar 12 2022 14:08:11

%S 2,1,1,3,2,3,2,1,5,5,4,4,3,4,8,8,7,7,7,7,8,7,8,7,6,6,7,7,7,12,13,12,

%T 11,12,10,10,11,11,16,18,18,18,17,18,18,17,16,15,16,17,15,18,18,18,18,

%U 17,16,18,17,16,24,24,23,23,23,23,24,23,24,24,25,32,33,34,33,36,34,35,33,35,33,32,35,34,33,33,34,33,35,34,31,32,30,35,35,34,32,32,45

%N a(n) is the number of ways the n-th prime number prime(n) can be written as sum of coprime b and c, in which b is a positive even number and c is an odd number that is -1 or greater, and all odd prime factors of b and c are less than or equal to sqrt(prime(n)).

%C All terms are positive integers, no zero term.

%C The Mathematica program generates first 99 items and the function AllSplits[n_] can be used to generate a(n) for any n > 1.

%H Reinhard Zumkeller, <a href="/A196526/b196526.txt">Table of n, a(n) for n = 2..1000</a>

%e n=2: prime(2)=3 = 2 + 1 = 2^2 - 1, so a(2)=2;

%e n=3: prime(3)=5 = 2^2 + 1, so a(3)=1;

%e ...

%e n=10: prime(10)=29, int(sqrt(29))=5, 29 = 2+3^3 = 2^2+5^2 = 2^2*5+3^2 = 2^3*3+5 = 2*3*5-1, so a(10)=5.

%t AllPrimes[k_] :=

%t Module[{p, maxfactor, pset}, p = Prime[k];

%t maxfactor = NextPrime[IntegerPart[Sqrt[p]] + 1, -1];

%t If[maxfactor == -2, pset = {2}, p0 = 2; pset = {2};

%t While[p0 = NextPrime[p0]; p0 <= maxfactor,

%t pset = Union[pset, {p0}]]]; pset];

%t NextIntegerWithFactor[seed_, fset_] :=

%t Module[{m, a, l, i, fset1}, m = seed - 1;

%t While[m++; If[Mod[m, 2] == 1, m++]; a = FactorInteger[m];

%t l = Length[a]; fset1 = {};

%t Do[fset1 = Union[fset1, {a[[i]][[1]]}], {i, 1, l}];

%t Intersection[fset1, fset] != fset1]; m];

%t FactorSet[seed_] :=

%t Module[{fset2, a, l, i}, a = FactorInteger[seed]; l = Length[a];

%t fset2 = {}; Do[fset2 = Union[fset2, {a[[i]][[1]]}], {i, 1, l}];

%t fset2]; SplitPrime[n_, q0_] :=

%t Module[{p, pset, q, r, rp, fs, rs, qs}, p = Prime[n];

%t pset = AllPrimes[n]; q = q0;

%t While[q++; q = NextIntegerWithFactor[q, pset]; r = p - q;

%t rp = Abs[r]; fs = FactorSet[rp];

%t rs = Complement[pset, FactorSet[q]];

%t qs = Intersection[fs,

%t rs]; (fs != {1}) && (fs != qs) && (q <= (p + 1))]; {p, q, r} ];

%t AllSplits[n_] :=

%t Module[{q, ss, spls}, q = 0; spls = {};

%t While[ss = SplitPrime[n, q]; q = ss[[2]];

%t If[q <= (Prime[n] + 1), spls = Union[spls, {ss}]];

%t q < (Prime[n] + 1)]; spls]; Table[

%t Length[AllSplits[i]], {i, 2, 100}] (* _Lei Zhou_ *)

%t zhouAbleCount[n_] := Length[Select[Range[-1, Prime[n], 2], GCD[#, Prime[n] - #] == 1 && FactorInteger[#][[-1, 1]] <= Sqrt[Prime[n]] && (IntegerQ[Log[2, Prime[n] - #]] || FactorInteger[Prime[n] - #][[-1, 1]] <= Sqrt[Prime[n]]) &]]; Table[zhouAbleCount[n], {n, 2, 100}] (* _Alonso del Arte_, Oct 03 2011 *)

%o (Haskell)

%o a196526 n = length [c | let p = a000040 n,

%o c <- [-1,1..p-1], let b = p - c,

%o gcd b c == 1,

%o a006530 b ^ 2 < p || p == 3, a006530 c ^ 2 < p]

%o -- _Reinhard Zumkeller_, Oct 04 2001

%Y Cf. A006530 (largest prime factor), A000040.

%K nonn,easy

%O 2,1

%A _Lei Zhou_, Oct 03 2011