The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196525 Decimal expansion of log(1+sqrt(2))/sqrt(2). 8
 6, 2, 3, 2, 2, 5, 2, 4, 0, 1, 4, 0, 2, 3, 0, 5, 1, 3, 3, 9, 4, 0, 2, 0, 0, 8, 0, 2, 5, 0, 5, 6, 8, 0, 0, 2, 6, 5, 0, 6, 9, 5, 3, 1, 2, 3, 4, 6, 5, 6, 7, 2, 5, 2, 8, 9, 8, 7, 1, 4, 7, 7, 6, 0, 9, 6, 1, 7, 0, 0, 0, 4, 5, 4, 7, 0, 1, 4, 1, 8, 0, 4, 6, 7, 6, 6, 9, 0, 7, 3, 2, 3, 5, 6, 2, 6, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, Table section 2.2, L(m=8, r=2, s=1). Paul J. Nahin, Inside interesting integrals, Undergrad. Lecture Notes in Physics, Springer (2020), (2.2.3) Index entries for transcendental numbers. FORMULA Equals Sum_{n>=1} A091337(n)/n = 1 - 1/3 - 1/5 + 1/7 + 1/9 - 1/11 - ... Equals 2*Sum_{n>=1} (-1)^n/A001539(n). - Michel Marcus, Sep 27 2017 From Fred Daniel Kline, May 23 2019: (Start) Equals arcsinh(1)/sqrt(2). Equals Sum_{n>=1} 1/A118417(n-1) = Sum_{n>=1} 1/((2*n - 1)*2^n). (End) From Peter Bala, Nov 01 2019: (Start) Equals (1/sqrt(2))*arccoth(sqrt(2)). Equals 1 - 8*Sum_{n >= 0} (-1)^(n+1)*n/(16*n^2 - 1). Equals 1 - Integral_{x = 0..inf} exp(-2*x)*cosh(x)/cosh(2*x) dx. Equals 2*Integral_{x = 0..inf} exp(x)*(exp(2*x) + 1)*(exp(4*x) - 1)/(exp(4*x) + 1)^2 dx - 1. (End) From Amiram Eldar, Aug 16 2020: (Start) Equals Sum_{k>=0} (-1)^k * (2*k)!!/(2*k+1)!!. Equals Integral_{x=0..Pi/4} 1/(cos(x) + sin(x)) dx. (End) From Peter Bala, Dec 01 2021: (Start) Equals 2*Sum_{k >= 0} (-1)^k/((4*k + 1)*(4*k + 3)). Let N be a positive integer divisible by 4. We have the asymptotic expansion (1/sqrt(2))*log(1 + sqrt(2)) - 2*Sum_{k = 0..N/4 - 1} (-1)^k/((4*k + 1)*(4*k + 3)) ~ 1/N^2 - 11/N^4 + 361/N^6 - 24611/N^8 + ..., where the sequence of unsigned coefficients [1, 11, 361, 24611, ...] is A000464. See A181048 and A181049. An example is given below. (End) Equals 1/Product_{p prime} (1 - Kronecker(8,p)/p)), where Kronecker(8,p) = 0 if p = 2, 1 if p == 1 or 7 (mod 8) or -1 if p == 3 or 5 (mod 8). - Amiram Eldar, Dec 17 2023 Equals integral_{x=0..Pi/2} sin^2(x)/(sin(x)+cos(x)) dx [Nahin]. - R. J. Mathar, May 16 2024 EXAMPLE 0.6232252401402305133940200802505680... = A091648/A002193. From Peter Bala, Dec 01 2021: (Start) With N = 10000, the truncated series Sum_{k = 0..N/4 - 1} (-1)^k/((4*k + 1)*(4*k+3)) = 0.6232252[3]014023[16]1339[3659]080... to 27 decimal places. The square bracketed numbers show where this decimal expansion differs from that of (1/sqrt(2))*log(1+sqrt(2)) = 0.6232252(4)014023(05) 1339(4020)080.... The numbers 1, -11, 361 must be added to the square bracketed numbers to give the correct decimal expansion to 27 decimal places. (End) MATHEMATICA RealDigits[Log[1+Sqrt[2]]/Sqrt[2], 10, 120][[1]] (* Harvey P. Dale, Dec 27 2011 *) RealDigits[Sum[1/((2 n - 1) 2^n), {n, 1, Infinity}], 10, 120][[1]] (* Fred Daniel Kline, May 23 2019 *) PROG (PARI) log(sqrt(2)+1)/sqrt(2) \\ Michel Marcus, Sep 27 2017 (Magma) SetDefaultRealField(RealField(100)); Log(Sqrt(2)+1)/Sqrt(2); // G. C. Greubel, Oct 05 2018 CROSSREFS Cf. A000464, A002193, A001539, A091648, A181048, A181049. Sequence in context: A196552 A062614 A155527 * A300892 A291359 A055942 Adjacent sequences: A196522 A196523 A196524 * A196526 A196527 A196528 KEYWORD nonn,cons,easy,changed AUTHOR R. J. Mathar, Oct 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 11:52 EDT 2024. Contains 372940 sequences. (Running on oeis4.)