login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies A(x) = x + x*A(A(A(A(A(x))))), so that this sequence shifts left under the 5th self-COMPOSE.
2

%I #9 Dec 03 2024 08:57:04

%S 1,1,5,45,545,7945,132005,2423501,48224129,1026722489,23177970949,

%T 551133715197,13734995332769,357361170997321,9677345660994725,

%U 272075021315860781,7925076713952829697,238747406787319312025,7427421640015549840133,238301672444134819413533,7875799810817511976148129

%N G.f. satisfies A(x) = x + x*A(A(A(A(A(x))))), so that this sequence shifts left under the 5th self-COMPOSE.

%C Conjecture: a(n) == 1 (mod 4) for n >= 1.

%H Paul D. Hanna, <a href="/A378575/b378575.txt">Table of n, a(n) for n = 1..400</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas, wherein A^n(x) denotes the n-th iteration of A(x) with A^0(x) = x.

%F (1) A(x) = x + x*A^5(x).

%F (2) A(x) = A(A(x))/(1 + A^6(x)).

%F (3) A(x) = Series_Reversion( x/(1 + A^4(x)) ).

%F (4) A(x) = Sum_{n>=0} Product_{k=0..n} A^(4*k)(x).

%F (5) A^n(x) = A^(n+1)(x) / (1 + A^(n+5)(x)) for n >= 0.

%F (6) A^n(x) = x*Product_{k>=0..n-1} (1 + A^(k+5)(x)) for n >= 1.

%e G.f.: A(x) = x + x^2 + 5*x^3 + 45*x^4 + 545*x^5 + 7945*x^6 + 132005*x^7 + 2423501*x^8 + 48224129*x^9 + 1026722489*x^10 + ...

%e where A(x) = x + x*A^5(x).

%e RELATED SERIES.

%e A^2(x) = A(A(x)) = x + 2*x^2 + 12*x^3 + 116*x^4 + 1460*x^5 + 21820*x^6 + 369140*x^7 + 6873732*x^8 + 138390908*x^9 + 2976373452*x^10 + ...

%e A^3(x) = A(A(A(x))) = x + 3*x^2 + 21*x^3 + 219*x^4 + 2885*x^5 + 44483*x^6 + 770269*x^7 + 14610939*x^8 + 298729077*x^9 + 6510526915*x^10 + ...

%e A^4(x) = A(A(A(A(x)))) = x + 4*x^2 + 32*x^3 + 360*x^4 + 4984*x^5 + 79648*x^6 + 1417768*x^7 + 27500512*x^8 + 572918728*x^9 + 12690763632*x^10 + ...

%e A^5(x) = A(A(A(A(A(x))))) = x + 5*x^2 + 45*x^3 + 545*x^4 + 7945*x^5 + 132005*x^6 + 2423501*x^7 + 48224129*x^8 + 1026722489*x^9 + ...

%e ...

%e By formula (4),

%e A(x) = x + x*A^4(x) + x*A^4(x)*A^8(x) + x*A^4(x)*A^8(x)*A^12(x) + x*A^4(x)*A^8(x)*A^12(x)*A^16(x) + ...

%e Examples of formula (5), A^n(x) = A^(n+1)(x)/(1 + A^(n+5)(x)):

%e n=0: x = A(x)/(1 + A(A(A(A(A(x)))))),

%e n=1: A(x) = A(A(x))/(1 + A(A(A(A(A(A(x))))))),

%e n=2: A(A(x)) = A(A(A(x)))/(1 + A(A(A(A(A(A(A(x)))))))),

%e n=3: A(A(A(x))) = A(A(A(A(x))))/(1 + A(A(A(A(A(A(A(A(x))))))))),

%e ...

%e Examples of formula (6), A^n(x) = x*Product_{k>=0..n-1} (1 + A^(k+5)(x)):

%e n=1: A(x) = x*(1 + A(A(A(A(A(x)))))),

%e n=2: A(A(x)) = x*(1 + A(A(A(A(A(x))))))*(1 + A(A(A(A(A(A(x))))))),

%e n=3: A(A(A(x))) = x*(1 + A(A(A(A(A(x))))))*(1 + A(A(A(A(A(A(x)))))))*(1 + A(A(A(A(A(A(A(x)))))))),

%e ...

%o (PARI) /* By definition, A(x) = x + x*A(A(A(A(A(x))))) */

%o /* Define the n-th iteration of function F: */

%o {ITERATE(n, F, p)=local(G=x); for(i=1, n, G=subst(F, x, G+x*O(x^p))); G}

%o {a(n) = my(A=x); for(i=1, n, A = x + x*ITERATE(5, A, n)); polcoef(A, n)}

%o for(n=1,30, print1(a(n),", "))

%Y Cf. A030266, A091713, A196523.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Dec 01 2024