Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 14 2022 08:55:10
%S 0,1,2,11,36,341,1702,23071,154056,2691241,22470602,479886131,
%T 4808343276,121361260541,1418683841902,41316096677191,551971861815696,
%U 18218322689532241,273815850521907602,10100775754144668251
%N Expansion of e.g.f. exp(x)*tan(2*x)/2.
%C Binomial transform of expansion of tan(2x)/2 (0,1,0,8,0,256,...).
%H Robert Israel, <a href="/A084098/b084098.txt">Table of n, a(n) for n = 0..430</a>
%F E.g.f.: exp(x)*tan(2*x)/2.
%F a(n) ~ n! * (exp(Pi/4)-(-1)^n*exp(-Pi/4)) * 4^n/Pi^(n+1). - _Vaclav Kotesovec_, Sep 29 2013
%F a(n) = i*((4i)^n*EulerE(n,-i/4)-1)/2. - _Benedict W. J. Irwin_, May 26 2016
%F a(n) = (i/2)*( -1 + (2*i)^n * Sum_{j=0..n} binomial(n,j)*(-1 - i/2)^j*EulerE(n-j) ). - _G. C. Greubel_, Oct 14 2022
%p seq(I*((4*I)^n*euler(n,-I/4)-1)/2, n=0..30); # _Robert Israel_, May 26 2016
%t CoefficientList[Series[E^x*Tan[2*x]/2, {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Sep 29 2013 *)
%t Table[I ((4 I)^n*EulerE[n, -I/4] - 1)/2, {n, 0, 20}] (* _Benedict W. J. Irwin_, May 26 2016 *)
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(x)*Tan(2*x)/2 ))); // _G. C. Greubel_, Oct 14 2022
%o (SageMath) [(i/2)*(-1 + (2*i)^n*sum(binomial(n,j)*(-1-i/2)^j*euler_number(n-j) for j in range(n+1))) for n in range(40)] # _G. C. Greubel_, Oct 14 2022
%Y Cf. A009739.
%K easy,nonn
%O 0,3
%A _Paul Barry_, May 11 2003