login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152819
"Upper primes" (see A152754).
2
2, 11, 37, 41, 43, 47, 59, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 227, 229, 233, 239, 251, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727
OFFSET
1,1
LINKS
MATHEMATICA
fh[n_, h_] := If[h==1, Mod[n, 2], If[Mod[n, 4]>=2, 1, 0]]; half[n_, h_ ] := Module[{t=1, s=0, m=n}, While[m>0, s += fh[m, h]*t; m=Quotient[m, 4]; t *= 2]; s]; mb[n_] := FromDigits[Riffle[IntegerDigits[n, 2], 0], 2]; aQ[n_] := PrimeQ[n] && mb[half[ n, 1]] < mb[half[n, 2]]; Select[Range[730], aQ] (* Amiram Eldar, Dec 16 2018 from the PARI code *)
PROG
(PARI) a000695(n) = fromdigits(binary(n), 4);
half1(n) = { my(t=1, s=0); while(n>0, s += (n%2)*t; n \= 4; t *= 2); (s); }; \\ A059905
half2(n) = { my(t=1, s=0); while(n>0, s += ((n%4)>=2)*t; n \= 4; t *= 2); (s); }; \\ A059906
isok(n) = isprime(n) && a000695(half1(n)) < a000695(half2(n)); \\ Michel Marcus, Dec 15 2018
CROSSREFS
Cf. A152754.
Sequence in context: A353979 A084098 A263547 * A297406 A178138 A220888
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Dec 13 2008
EXTENSIONS
More terms from Michel Marcus, Dec 15 2018
STATUS
approved