OFFSET
0,3
LINKS
Robert Israel, Table of n, a(n) for n = 0..484
FORMULA
E.g.f.: exp(x)*tan(x). - Zerinvary Lajos, Apr 05 2009
G.f.: 1/(x-1)/Q(0), where Q(k)= 1 - 1/x - (k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 26 2013
G.f.: x/(1-x)/Q(0), where Q(k)= 1 - x - x^2*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 26 2013
G.f.: G(0)*x/(1-x)^2, where G(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - (1-x)^2/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 23 2014
a(n) ~ 2^(3/2 + n)*(exp(Pi) - (-1)^n)*exp(-Pi/2 - n)*Pi^(-1/2 - n)*n^(1/2 + n). - Robert Israel, Sep 22 2019
MAPLE
G(x):=exp(x)*tan(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..22 ); # Zerinvary Lajos, Apr 05 2009
# Alternative:
S:= series(exp(x)*tan(x), x, 51):
seq(coeff(S, x, j)*j!, j=0..50); # Robert Israel, Sep 22 2019
PROG
(PARI) x='x+O('x^66); concat([0], Vec(serlaplace(tan(x)*exp(x)))) \\ Joerg Arndt, Apr 26 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Extended and signs tested by Olivier Gérard, Mar 15 1997
STATUS
approved