OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..240
Peter Luschny, An old operation on sequences: the Seidel transform
FORMULA
a(n) ~ (2*n)! * 4^(n+1) * sinh(Pi/2) / Pi^(2*n+1). - Vaclav Kotesovec, Jan 24 2015
MATHEMATICA
nn = 20; Table[(CoefficientList[Series[Sinh[x]*Tan[x], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 24 2015 *)
PROG
(Sage) # Generalized algorithm of L. Seidel (1877)
def A009747_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(2*n) :
Am = 1 if e == -1 else 0
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
if e == -1 : R.append(A[-i//2])
return R
A009747_list(10) # Peter Luschny, Jun 02 2012
(PARI) x='x+O('x^66); v=Vec(serlaplace(tan(x)*sinh(x))); concat([0], vector(#v\2, n, v[2*n-1])) \\ Joerg Arndt, Apr 26 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and signs tested by Olivier Gérard, Mar 15 1997
STATUS
approved