login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110819 Non-palindromes in A110751; that is, non-palindromic numbers n such that n and R(n) have the same prime divisors, where R(n) = digit reversal of n. 8
1089, 2178, 4356, 6534, 8712, 9801, 10989, 21978, 24024, 26208, 42042, 43956, 48048, 61248, 65934, 80262, 84084, 84216, 87912, 98901, 109989, 219978, 231504, 234234, 242424, 253344, 255528, 264264, 272646, 275184, 277816, 288288, 405132, 424242, 432432, 439956 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Trivially, if integer k is a term of this sequence, then R(k) is a term as well.

If n is in the sequence, then so is (10^m+1)*n where 10^m > n.  In particular, the sequence is infinite. - Robert Israel, Aug 14 2014

LINKS

Donovan Johnson, Table of n, a(n) for n = 1..500

EXAMPLE

The prime divisors of 87912 and R(87912) = 21978 are both {2, 3, 11, 37}, so 87912 and 21978 are both in the sequence.

MAPLE

revdigs:= proc(n)

local L, nL, i;

L:= convert(n, base, 10);

nL:= nops(L);

add(L[i]*10^(nL-i), i=1..nL);

end:

filter:= proc(n) local r;

  r:= revdigs(n);

  r <> n and numtheory:-factorset(r) = numtheory:-factorset(n)

end proc:

select(filter, [$10 .. 10^6]); # Robert Israel, Aug 14 2014

MATHEMATICA

r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[If[r[n] != n && Select[Divisors[n], PrimeQ] == Select[Divisors[r[n]], PrimeQ], Print[n]], {n, 1, 10^6}]

PROG

(Python)

from sympy import primefactors

A110819 = [n for n in range(1, 10**6) if str(n) != str(n)[::-1] and primefactors(n) == primefactors(int(str(n)[::-1]))] # Chai Wah Wu, Aug 14 2014

CROSSREFS

Cf. A110751.

Sequence in context: A223429 A168661 A175698 * A071685 A008919 A110843

Adjacent sequences:  A110816 A110817 A110818 * A110820 A110821 A110822

KEYWORD

base,nonn

AUTHOR

Ryan Propper, Sep 15 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 06:54 EDT 2022. Contains 356110 sequences. (Running on oeis4.)