This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071685 Non-palindromic numbers n, not divisible by 10, such that either n divides R(n) or R(n) divides n, where R(n) is the digit-reversal of n. 2
 1089, 2178, 8712, 9801, 10989, 21978, 87912, 98901, 109989, 219978, 879912, 989901, 1099989, 2199978, 8799912, 9899901, 10891089, 10999989, 21782178, 21999978, 87128712, 87999912, 98019801, 98999901, 108901089, 109999989 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The quotient R(n)/n or n/R(n) is always 4 or 9. This is the union of the four sequence A001232, A222814, A008918, A222815. Equivalently, the union of A008919 and A031877. There are 4*Fibonacci(floor((n-2)/2)) terms with n digits (this is 2*A214927 or essentially 4*A103609). - Ray Chandler, Oct 12 2017 Conjecture: every term mod 100 is equal to 1, 12, 78, or 89. - Harvey P. Dale, Dec 13 2017 LINKS Ray Chandler, Table of n, a(n) for n = 1..10000 N. J. A. Sloane, 2178 And All That, Fib. Quart., 52 (2014), 99-120. FORMULA x=q*Rev[x], q is integer q><1, q><10^j and neither of x or Rev[x] is divisible with 10. EXAMPLE Palindromic solutions like 12021 or also solutions divisible by 10 were filtered out like {8380,838; q=10} or {8400,48; q=175}. In case of m>Rev[m], q=m/Rev[m]=4 or 9. MATHEMATICA nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] ed[x_] := IntegerDigits[x] red[x_] := Reverse[IntegerDigits[x]] Do[s=Mod[Max[{n, tn[red[n]]}], Min[{n, r=tn[red[n]]}]]; If[Equal[s, 0]&&!Equal[Mod[n, 10], 0] &&!Equal[n, r], Print[{n, r/n}]], {n, 1, 1000000}] npnQ[n_]:=Module[{r=IntegerReverse[n]}, !PalindromeQ[n]&&!Divisible[ n, 10] &&(Mod[n, r]==0||Mod[r, n]==0)]; Select[Range[11*10^7], npnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 13 2017 *) CROSSREFS Cf. A001232, A222814, A008918, A222815, A008919, A031877. Cf. A004086, A055483, A069554, A103609, A214927. Sequence in context: A168661 A175698 A110819 * A008919 A110843 A319570 Adjacent sequences:  A071682 A071683 A071684 * A071686 A071687 A071688 KEYWORD base,easy,nonn AUTHOR Labos Elemer, Jun 03 2002 EXTENSIONS Corrected and extended by Harvey P. Dale, Jul 01 2013 Edited by N. J. A. Sloane, Jul 02 2013 Missing terms inserted by Ray Chandler, Oct 09 2017 Incorrect comment removed by Ray Chandler, Oct 12 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 04:40 EDT 2019. Contains 328211 sequences. (Running on oeis4.)