

A107604


Order of appearance of twos in the Fibonacci substitution :triangular in form.


0



2, 2, 2, 2, 5, 2, 5, 2, 5, 7, 2, 5, 7, 2, 5, 7, 2, 5, 7, 10, 2, 5, 7, 10, 2, 5, 7, 10, 2, 5, 7, 10, 13, 2, 5, 7, 10, 13, 2, 5, 7, 10, 13, 15, 2, 5, 7, 10, 13, 15, 2, 5, 7, 10, 13, 15, 2, 5, 7, 10, 13, 15, 18, 2, 5, 7, 10, 13, 15, 18, 2, 5, 7, 10, 13, 15, 18, 20
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Fibonacci substitutions contain thrre types of informstion: 1) length 2) count of ones and twos 3) order of appearance of ones and twos


LINKS

Table of n, a(n) for n=0..77.


FORMULA

1>{1, 2}, 2>{1}


EXAMPLE

{}
2,
2,
2,
2,5,
2,5,
2,5,7,
2,5,7,
2,5,7,
2,5,7,10,
2,5,7,10,
2,5,7,10,
2,5,7,10,13


MATHEMATICA

s[1] = {1, 2}; s[2] = {1};; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n  1]] a = Table[Flatten[Table[If[p[i][[j]] == 2, j, {}], {j, 1, i}]], {i, 1, 20}]


CROSSREFS

Cf. A000045.
Sequence in context: A154097 A221491 A224254 * A080647 A324516 A181058
Adjacent sequences: A107601 A107602 A107603 * A107605 A107606 A107607


KEYWORD

nonn,uned,tabl


AUTHOR

Roger L. Bagula, Jun 09 2005


STATUS

approved



