Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #3 Mar 30 2012 17:34:15
%S 2,2,2,2,5,2,5,2,5,7,2,5,7,2,5,7,2,5,7,10,2,5,7,10,2,5,7,10,2,5,7,10,
%T 13,2,5,7,10,13,2,5,7,10,13,15,2,5,7,10,13,15,2,5,7,10,13,15,2,5,7,10,
%U 13,15,18,2,5,7,10,13,15,18,2,5,7,10,13,15,18,20
%N Order of appearance of twos in the Fibonacci substitution :triangular in form.
%C Fibonacci substitutions contain thrre types of informstion: 1) length 2) count of ones and twos 3) order of appearance of ones and twos
%F 1->{1, 2}, 2->{1}
%e {}
%e 2,
%e 2,
%e 2,
%e 2,5,
%e 2,5,
%e 2,5,7,
%e 2,5,7,
%e 2,5,7,
%e 2,5,7,10,
%e 2,5,7,10,
%e 2,5,7,10,
%e 2,5,7,10,13
%t s[1] = {1, 2}; s[2] = {1};; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] a = Table[Flatten[Table[If[p[i][[j]] == 2, j, {}], {j, 1, i}]], {i, 1, 20}]
%Y Cf. A000045.
%K nonn,uned,tabl
%O 0,1
%A _Roger L. Bagula_, Jun 09 2005