The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A341444 Dirichlet inverse of A083399, where A083399(n) = 1 + omega(n). 2
 1, -2, -2, 2, -2, 5, -2, -2, 2, 5, -2, -7, -2, 5, 5, 2, -2, -7, -2, -7, 5, 5, -2, 9, 2, 5, -2, -7, -2, -16, -2, -2, 5, 5, 5, 14, -2, 5, 5, 9, -2, -16, -2, -7, -7, 5, -2, -11, 2, -7, 5, -7, -2, 9, 5, 9, 5, 5, -2, 30, -2, 5, -7, 2, 5, -16, -2, -7, 5, -16, -2, -23, -2, 5, -7, -7, 5, -16, -2, -11, 2, 5, -2, 30, 5, 5, 5, 9, -2, 30, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The Dirichlet inverse function, a(n) = (omega + 1)^(-1)(n). - Original name. LINKS Antti Karttunen, Table of n, a(n) for n = 1..20000 Carl-Erik Fröberg, On the prime zeta function, BIT Numerical Mathematics, Vol. 8, No. 3 (1968), pp. 187-202. H. Hwang and S. Janson, A central limit theorem for random ordered factorizations of integers, Electron. J. Probab., 16(12):347-361, 2011. Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000 M. D. Schmidt, New characterizations of the summatory function of the Moebius function, arXiv:2102.05842 [math.NT], 2021. Index entries for sequences computed from exponents in factorization of n FORMULA a(n) = (-1)^A001222(n)*Sum_{d | n} A008683(n/d)^2*A008480(d). a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 19:56 EDT 2024. Contains 374540 sequences. (Running on oeis4.)