login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334743
a(1) = 1; a(n) = -Sum_{d|n, d < n} omega(n/d) * a(d), where omega = A001221.
3
1, -1, -1, 0, -1, 0, -1, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 0, 0, 0, 0, 1, -1, 3, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 3, -1, 1, 1, 0, -1, 0, 0, 1, 0, 1, -1, 0, 0, 0, 0, 0, -1, -1, -1, 0, 1, 0, 0, 3, -1, 1, 0, 3, -1, -1, -1, 0, 1, 1, 0, 3, -1, 0, 0, 0, -1, -1, 0, 0, 0, 0, -1, -1
OFFSET
1,30
COMMENTS
Dirichlet inverse of A087802. - Antti Karttunen, Nov 29 2024
LINKS
Eric Weisstein's World of Mathematics, Distinct Prime Factors
FORMULA
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} omega(k) * A(x^k).
Dirichlet g.f.: 1 / (1 + zeta(s) * primezeta(s)).
MATHEMATICA
a[n_] := If[n == 1, n, -Sum[If[d < n, PrimeNu[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 90}]
PROG
(PARI)
memoA334743 = Map();
A334743(n) = if(1==n, 1, my(v); if(mapisdefined(memoA334743, n, &v), v, v = -sumdiv(n, d, if(d<n, omega(n/d)*A334743(d), 0)); mapput(memoA334743, n, v); (v))); \\ Antti Karttunen, Nov 29 2024
CROSSREFS
Cf. A001221, A007427, A008480, A008683, A010051, A087802 (Dirichlet inverse), A327276, A334744.
Sequence in context: A060282 A060283 A255851 * A078529 A180017 A243827
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 09 2020
STATUS
approved