Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Nov 29 2024 16:33:14
%S 1,-1,-1,0,-1,0,-1,0,0,0,-1,1,-1,0,0,0,-1,1,-1,1,0,0,-1,0,0,0,0,1,-1,
%T 3,-1,0,0,0,0,0,-1,0,0,0,-1,3,-1,1,1,0,-1,0,0,1,0,1,-1,0,0,0,0,0,-1,
%U -1,-1,0,1,0,0,3,-1,1,0,3,-1,-1,-1,0,1,1,0,3,-1,0,0,0,-1,-1,0,0,0,0,-1,-1
%N a(1) = 1; a(n) = -Sum_{d|n, d < n} omega(n/d) * a(d), where omega = A001221.
%C Dirichlet inverse of A087802. - _Antti Karttunen_, Nov 29 2024
%H Antti Karttunen, <a href="/A334743/b334743.txt">Table of n, a(n) for n = 1..20000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DistinctPrimeFactors.html">Distinct Prime Factors</a>
%F G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} omega(k) * A(x^k).
%F Dirichlet g.f.: 1 / (1 + zeta(s) * primezeta(s)).
%t a[n_] := If[n == 1, n, -Sum[If[d < n, PrimeNu[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 90}]
%o (PARI)
%o memoA334743 = Map();
%o A334743(n) = if(1==n,1,my(v); if(mapisdefined(memoA334743,n,&v), v, v = -sumdiv(n,d,if(d<n,omega(n/d)*A334743(d),0)); mapput(memoA334743,n,v); (v))); \\ _Antti Karttunen_, Nov 29 2024
%Y Cf. A001221, A007427, A008480, A008683, A010051, A087802 (Dirichlet inverse), A327276, A334744.
%K sign
%O 1,30
%A _Ilya Gutkovskiy_, May 09 2020