login
A087802
a(n) = Sum_{d|n, d nonprime} mu(d), where mu = A008683.
2
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3
OFFSET
1,6
COMMENTS
A064372 and this sequence first differ at term 64: A064372(64)=2 and a(64)=1. - Rick L. Shepherd, Mar 07 2004
LINKS
FORMULA
a(n) = if n=1 then 1, else A001221(n). - Vladeta Jovovic, Oct 17 2003
EXAMPLE
Divisors of n=42: {1,2,3,6,7,14,21,42}, a(42) = mu(1) + mu(6) + mu(14) + mu(21) + mu(42) = 1+1+1+1-1 = 3.
MATHEMATICA
Table[Total[MoebiusMu[#]&/@Select[Divisors[n], !PrimeQ[#]&]], {n, 120}] (* Harvey P. Dale, Oct 14 2014 *)
PROG
(PARI) A087802(n) = sumdiv(n, d, if(!isprime(d), moebius(d)))
CROSSREFS
Cf. A001221, A008683 (mu), A023890, A033273. Different from A079553.
Sequence in context: A231813 A158210 A322307 * A079553 A001221 A064372
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 11 2003
STATUS
approved