login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327276
a(n) = Sum_{d|n, d odd} mu(d) * mu(n/d).
8
1, -1, -2, 0, -2, 2, -2, 0, 1, 2, -2, 0, -2, 2, 4, 0, -2, -1, -2, 0, 4, 2, -2, 0, 1, 2, 0, 0, -2, -4, -2, 0, 4, 2, 4, 0, -2, 2, 4, 0, -2, -4, -2, 0, -2, 2, -2, 0, 1, -1, 4, 0, -2, 0, 4, 0, 4, 2, -2, 0, -2, 2, -2, 0, 4, -4, -2, 0, 4, -4, -2, 0, -2, 2, -2, 0, 4, -4, -2
OFFSET
1,3
COMMENTS
Dirichlet inverse of A001227.
All terms are 0 or +/- a power of 2. - Robert Israel, Nov 26 2019
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} A001227(k) * A(x^k).
Dirichlet g.f.: 1 / (zeta(s)^2 * (1 - 1/2^s)).
a(1) = 1; a(n) = -Sum_{d|n, d<n} A001227(n/d) * a(d).
a(n) = Sum_{d|n} A209229(n/d) * A007427(d).
Multiplicative with a(2^e) = -1 if e = 1, and 0 if e > 1, and a(p^e) = -2 if e = 1, 1 if e = 2, and 0 if e > 2, for an odd prime p. - Amiram Eldar, Oct 25 2020
MAPLE
f:= proc(n) local m, d;
m:= n/2^padic:-ordp(n, 2);
add(numtheory:-mobius(d)*numtheory:-mobius(n/d), d = numtheory:-divisors(m))
end proc:
map(f, [$1..100]); # Robert Israel, Nov 26 2019
MATHEMATICA
Table[DivisorSum[n, MoebiusMu[#] MoebiusMu[n/#] &, OddQ[#] &], {n, 1, 79}]
a[n_] := If[n == 1, n, -Sum[If[d < n, DivisorSum[n/d, Mod[#, 2] &] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 79}]
f[p_, e_] := Which[e == 1, -1 - Boole[p > 2], e == 2, Boole[p > 2], e > 2, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
PROG
(Magma) [&+[MoebiusMu(d)*MoebiusMu(n div d): d in [a:a in Divisors(n)| IsOdd(a)]]:n in [1..80]]; // Marius A. Burtea, Sep 15 2019
(PARI) a(n)={sumdiv(n, d, if(d%2, moebius(d)*moebius(n/d)))} \\ Andrew Howroyd, Sep 23 2019
CROSSREFS
KEYWORD
sign,mult,easy
AUTHOR
Ilya Gutkovskiy, Sep 15 2019
STATUS
approved