login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n, d odd} mu(d) * mu(n/d).
8

%I #28 Sep 08 2022 08:46:24

%S 1,-1,-2,0,-2,2,-2,0,1,2,-2,0,-2,2,4,0,-2,-1,-2,0,4,2,-2,0,1,2,0,0,-2,

%T -4,-2,0,4,2,4,0,-2,2,4,0,-2,-4,-2,0,-2,2,-2,0,1,-1,4,0,-2,0,4,0,4,2,

%U -2,0,-2,2,-2,0,4,-4,-2,0,4,-4,-2,0,-2,2,-2,0,4,-4,-2

%N a(n) = Sum_{d|n, d odd} mu(d) * mu(n/d).

%C Dirichlet inverse of A001227.

%C All terms are 0 or +/- a power of 2. - _Robert Israel_, Nov 26 2019

%H Robert Israel, <a href="/A327276/b327276.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} A001227(k) * A(x^k).

%F Dirichlet g.f.: 1 / (zeta(s)^2 * (1 - 1/2^s)).

%F a(1) = 1; a(n) = -Sum_{d|n, d<n} A001227(n/d) * a(d).

%F a(n) = Sum_{d|n} A209229(n/d) * A007427(d).

%F Multiplicative with a(2^e) = -1 if e = 1, and 0 if e > 1, and a(p^e) = -2 if e = 1, 1 if e = 2, and 0 if e > 2, for an odd prime p. - _Amiram Eldar_, Oct 25 2020

%p f:= proc(n) local m, d;

%p m:= n/2^padic:-ordp(n,2);

%p add(numtheory:-mobius(d)*numtheory:-mobius(n/d), d = numtheory:-divisors(m))

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Nov 26 2019

%t Table[DivisorSum[n, MoebiusMu[#] MoebiusMu[n/#] &, OddQ[#] &], {n, 1, 79}]

%t a[n_] := If[n == 1, n, -Sum[If[d < n, DivisorSum[n/d, Mod[#, 2] &] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 79}]

%t f[p_, e_] := Which[e == 1, -1 - Boole[p > 2], e == 2, Boole[p > 2], e > 2, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Oct 25 2020 *)

%o (Magma) [&+[MoebiusMu(d)*MoebiusMu(n div d): d in [a:a in Divisors(n)| IsOdd(a)]]:n in [1..80]]; // _Marius A. Burtea_, Sep 15 2019

%o (PARI) a(n)={sumdiv(n, d, if(d%2, moebius(d)*moebius(n/d)))} \\ _Andrew Howroyd_, Sep 23 2019

%Y Cf. A001227, A007427, A008683, A068068, A209229, A327278.

%K sign,mult,easy

%O 1,3

%A _Ilya Gutkovskiy_, Sep 15 2019