This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A019279 Superperfect numbers: sigma(sigma(n)) = 2n where sigma is the sum-of-divisors function A000203. 69
 2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, 81129638414606681695789005144064, 85070591730234615865843651857942052864 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Let sigma_m(n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives (2,2)-perfect numbers. Even values of these are 2^(p-1) where 2^p-1 is a Mersenne prime (A000043 and A000668). No odd superperfect numbers are known. Hunsucker and Pomerance checked that there are no odd ones below 7 * 10^24. - Jud McCranie, Jun 01 2000 The number of divisors of a(n) is equal to A000043(n), if there are no odd superperfect numbers. - Omar E. Pol, Feb 29 2008 The sum of divisors of a(n) is the n-th Mersenne prime A000668(n), provided that there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008 Largest proper divisor of A072868(n) if there are no odd superperfect numbers. - Omar E. Pol, Apr 25 2008 This sequence is a divisibility sequence if there are no odd superperfect numbers. - Charles R Greathouse IV, Mar 14 2012 For n>1, sigma(sigma(a(n))) + phi(phi(a(n))) = (9/4)*a(n). - Farideh Firoozbakht, Mar 02 2015 LINKS G. L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100. G. G. Dandapat, J. L. Hunsucker, and Carl Pomerance, Some new results on odd perfect numbers, Pacific J. Math. Volume 57, Number 2 (1975), 359-364. A. Hoque, H. Kalita, Generalized perfect numbers connected with arithmetic functions, Math. Sci. Lett. 3, No. 3, 249-253 (2014). Paul Shubhankar, Ten Problems of Number Theory, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-9, November 2013 L. Toth, The alternating sum-of-divisors function, 9th Joint Conf. on Math. and Comp. Sci., February 9-12, 2012, Siofok, Hungary. L. Toth, A survey of the alternating sum-of-divisors function, arXiv:1111.4842 [math.NT], 2011-2014. Eric Weisstein's World of Mathematics, Superperfect Number FORMULA a(n) = (1 + A000668(n))/2, if there are no odd superperfect numbers. - Omar E. Pol, Mar 11 2008 Also, if there are no odd superperfect numbers then a(n) = 2^A000043(n)/2 = A072868(n)/2 = A032742(A072868(n)). - Omar E. Pol, Apr 25 2008 a(n) = 2^A090748(n), if there are no odd superperfect numbers. - Ivan N. Ianakiev, Sep 04 2013 EXAMPLE sigma(sigma(4))=2*4, so 4 is in the sequence. MATHEMATICA Select[ 2^Range[60], DivisorSigma[ 1, DivisorSigma[ 1, #]] == 2*# & ] (* Jean-François Alcover, Sep 30 2011, assuming powers of 2 *) PROG (PARI) is(n)=sigma(sigma(n))==2*n \\ Charles R Greathouse IV, Nov 20 2012 CROSSREFS Cf. A019280, A000203, A000396, A000668, A000043, A034897, A061652, A032742, A072868. Sequence in context: A271234 A061286 * A061652 A162119 A213327 A192623 Adjacent sequences:  A019276 A019277 A019278 * A019280 A019281 A019282 KEYWORD nonn,more,nice AUTHOR EXTENSIONS a(8)-a(9) from Jud McCranie, Jun 01 2000 a(10)-a(12) from Vincenzo Librandi, Mar 14 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.