login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286524
Denominator of the volume of the d-th Chern-Vaaler star body.
6
1, 1, 1, 9, 27, 225, 30375, 7441875, 1071875, 1181472075, 232602314765625, 7296820763203125, 1228777319702643046875, 407740293448065703125, 12646770836979187723815, 13904872587870848957579157123046875, 89477855102948913042021876086806640625, 3865644245069923858264226752294921875, 18203690021177687874093952515006818038631103515625
OFFSET
0,4
COMMENTS
Chern and Vaaler's estimate of the number M(d,T) of integer polynomials of degree at most d, and of Mahler's measure at most T, is M(d,T) = V(d+1)*T^(d+1) + O(T^d) as T -> infinity, where d is fixed and V(d+1) is the volume of the d-th Chern-Vaaler star body, which is nonconvex and symmetric. For the "monic slice" of the star body, see A288756, A288757, A288758.
LINKS
S.-J. Chern and J.D. Vaaler, The distribution of values of Mahler's measure, J. Reine. Angew. Math., 540 (2001), 1-47.
Robert Grizzard and Joseph Gunther, Slicing the stars: counting algebraic numbers, integers, and units by degree and height, arXiv:1609.08720 [math.NT] 2016.
FORMULA
Denominator of 2^(d + 1) * (d + 1)^e * Product_{k=1..e} ((2*k)^(d - 2*k)/(2*k + 1)^(d + 1 - 2*k)) where e = floor((d-1)/2).
Floor(A286523(n) / a(n)) = A286522(n).
EXAMPLE
2, 4, 8, 128/9, 640/27, 8192/225, 1605632/30375, 536870912/7441875, 100663296/1071875, ...
MATHEMATICA
v[d_] := (e = Floor[(d - 1)/2]; 2^(d + 1) (d + 1)^e Product[(2 k)^(d - 2 k)/(2 k + 1)^(d + 1 - 2 k), {k, 1, e}]); Table[ Denominator[v[d]], {d, 0, 18}]
PROG
(PARI) a(n) = denominator(2^(n+1)*(n+1)^((n-1)\2)*prod(k=1, (n-1)\2, (2*k)^(n-2*k)/(2*k+1)^(n+1-2*k))); \\ Jinyuan Wang, Mar 05 2020
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Jonathan Sondow, May 26 2017
STATUS
approved