login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089324
Number of lattice paths from (0,0) to the line x+y=n that use the step set {(0,1),(1,0),(2,0),(3,0),...} and never pass below y=x.
3
1, 1, 2, 3, 7, 12, 29, 53, 130, 247, 611, 1192, 2965, 5897, 14726, 29723, 74443, 152020, 381617, 786733, 1978582, 4111295, 10355303, 21661168, 54628201, 114925697, 290148890, 613442227, 1550177791, 3291704108, 8324934533, 17745496453
OFFSET
0,3
COMMENTS
a(n) = Sum(A011117(i,n-i), i=0..floor(n/2)), i.e. diagonal sums in A011117 formatted as an upper right triangle.
Hankel transform is A060656. - Paul Barry, Mar 01 2010
LINKS
FORMULA
G.f.: 2/[(1-z)^2+sqrt(1-6z^2+z^4)].
G.f.: 1/(1-x-x^2/(1-2x^2/(1-x^2/(1-2x^2/(1-x^2/(1-2x^2/(1-... (continued fraction). - Paul Barry, Mar 01 2010
Conjecture: (n+1)*a(n) +3*(-n-1)*a(n-1) +(-5*n+13)*a(n-2) +18*(n-2)*a(n-3) +(-5*n+7)*a(n-4) +3*(-n+5)*a(n-5) +(n-5)*a(n-6)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ sqrt(6*sqrt(2)-8) * (1 - (12*sqrt(2)-17)*(-1)^n) * (sqrt(2)+1)^(n+4) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 09 2014
EXAMPLE
a(4) = 7 because we have VVVV, VVVh, VVhV, VhVV, VVH, VVhh and VhVh, where V=(0,1), h=(1,0) and H=(2,0).
MATHEMATICA
CoefficientList[Series[2/((1-x)^2+Sqrt[1-6*x^2+x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2014 *)
CROSSREFS
Cf. A011117.
Sequence in context: A342132 A032173 A130616 * A339159 A297438 A111759
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 25 2003
STATUS
approved