OFFSET
0,3
COMMENTS
a(n) = Sum(A011117(i,n-i), i=0..floor(n/2)), i.e. diagonal sums in A011117 formatted as an upper right triangle.
Hankel transform is A060656. - Paul Barry, Mar 01 2010
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 2/[(1-z)^2+sqrt(1-6z^2+z^4)].
G.f.: 1/(1-x-x^2/(1-2x^2/(1-x^2/(1-2x^2/(1-x^2/(1-2x^2/(1-... (continued fraction). - Paul Barry, Mar 01 2010
Conjecture: (n+1)*a(n) +3*(-n-1)*a(n-1) +(-5*n+13)*a(n-2) +18*(n-2)*a(n-3) +(-5*n+7)*a(n-4) +3*(-n+5)*a(n-5) +(n-5)*a(n-6)=0. - R. J. Mathar, Nov 24 2012
a(n) ~ sqrt(6*sqrt(2)-8) * (1 - (12*sqrt(2)-17)*(-1)^n) * (sqrt(2)+1)^(n+4) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 09 2014
EXAMPLE
a(4) = 7 because we have VVVV, VVVh, VVhV, VhVV, VVH, VVhh and VhVh, where V=(0,1), h=(1,0) and H=(2,0).
MATHEMATICA
CoefficientList[Series[2/((1-x)^2+Sqrt[1-6*x^2+x^4]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 25 2003
STATUS
approved