login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297438
A divisor analog of the Motzkin numbers A001006.
0
1, 1, 2, 3, 7, 12, 29, 56, 134, 283, 672, 1496, 3568, 8214, 19678, 46364, 111766, 267467, 648941, 1570540, 3833777, 9357181, 22967808, 56430230, 139193762, 343825265, 851777363, 2113382992, 5255584309, 13089273904
OFFSET
1,3
COMMENTS
By changing the upper summation index in the recurrence from k-1 to n-1 we get the Motzkin numbers A001006.
That is, by changing
Sum_{i=1..k-1} t(n-i, k-1) - Sum_{i=1..k-1} t(n-i, k)
into
Sum_{i=1..n-1} t(n-i, k-1) - Sum_{i=1..n-1} t(n-i, k),
we get the Motzkin numbers.
With this change of upper summation index, a(n) is to A001006 as A239605 is to A000108.
MATHEMATICA
Clear[t, n, k, i, nn, x];
coeff = {1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
mp[m_, e_] :=
If[e == 0, IdentityMatrix@Length@m, MatrixPower[m, e]]; nn =
Length[coeff]; cc = Range[nn]*0 + 1; Monitor[
Do[Clear[t]; t[n_, 1] := t[n, 1] = cc[[n]];
t[n_, k_] :=
t[n, k] =
If[n >= k,
Sum[t[n - i, k - 1], {i, 1, k - 1}] -
Sum[t[n - i, k], {i, 1, k - 1}], 0];
A4 = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}];
A5 = A4[[1 ;; nn - 1]]; A5 = Prepend[A5, ConstantArray[0, nn]];
cc = Total[
Table[coeff[[n]]*mp[A5, n - 1][[All, 1]], {n, 1, nn}]]; , {i, 1,
nn}], i]; cc
CROSSREFS
Sequence in context: A130616 A089324 A339159 * A111759 A305751 A047749
KEYWORD
nonn
AUTHOR
Mats Granvik, Dec 30 2017
STATUS
approved