login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339159
Number of achiral series-parallel networks with n elements.
5
1, 2, 3, 7, 12, 29, 54, 130, 258, 616, 1274, 3030, 6458, 15287, 33335, 78694, 174587, 411469, 925246, 2179010, 4952389, 11662221, 26733827, 62980863, 145385388, 342766624, 795810810, 1878109984, 4381423357, 10352044123, 24247955489, 57362089607
OFFSET
1,2
COMMENTS
A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. a(n) is the number of series or parallel configurations with n unit elements that are invariant under the reversal of all contained series configurations.
FORMULA
a(n) = A339157(n) + A339158(n) for n > 1.
EXAMPLE
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 3: (ooo), (o|oo), (o|o|o), (o|ooo), (oo|oo), (o|o|oo), (o|o|o|o).
a(4) = 7: (oooo), ((o|o)(o|o)), (o(o|o)o).
PROG
(PARI) \\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2), t=p); for(n=1, n\2, t=x + q*(1 + p); p=x + x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2))) - t); Vec(p+t-x+O(x*x^n))}
CROSSREFS
Cf. A003430 (oriented), A339157, A339158, A339225 (unoriented).
Sequence in context: A032173 A130616 A089324 * A297438 A111759 A305751
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Nov 27 2020
STATUS
approved