login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339225
Number of unoriented series-parallel networks with n elements.
13
1, 2, 4, 11, 30, 98, 328, 1193, 4459, 17287, 68283, 274726, 1118960, 4607578, 19135274, 80063095, 337104367, 1427274619, 6072510001, 25949049372, 111319539096, 479243000380, 2069825207344, 8965693829582, 38940393808337, 169546919220357, 739895248735963
OFFSET
1,2
COMMENTS
A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. a(n) is the number of distinct series or parallel configurations with n unit elements modulo reversing the order of all series configurations.
FORMULA
a(n) = (A003430(n) + A339159(n))/2.
a(n) = A339223(n) + A339224(n) for n > 1.
A000084(n) <= a(n) <= A003430(n).
EXAMPLE
In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'.
a(1) = 1: (o).
a(2) = 2: (oo), (o|o).
a(3) = 4: (ooo), (o(o|o)), (o|o|o), (o|oo).
a(4) = 11: (oooo), (oo(o|o)), (o(o|o)o), ((o|o)(o|o)), (o(o|oo)), (o(o|o|o)), (o|o|o|o), (o|o|oo), (oo|oo), (o|ooo), (o|o(o|o)).
PROG
(PARI) \\ here B(n) gives A003430 as a power series.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p}
seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2), t=p); for(n=1, n\2, t=x + q*(1 + p); p=x + x*Ser(EulerT(Vec(t+(s-subst(t, x, x^2))/2))) - t); Vec(p+t-x+B(n))/2}
CROSSREFS
Cf. A000084, A003430 (oriented), A339159 (achiral), A339223, A339224.
Sequence in context: A141268 A135527 A215460 * A148158 A148159 A275310
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Nov 27 2020
STATUS
approved