login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060654
a(n) = gcd(n, A060766(n)).
1
1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 10, 7, 11, 1, 12, 5, 13, 9, 14, 1, 30, 1, 16, 11, 17, 7, 18, 1, 19, 13, 20, 1, 21, 1, 22, 15, 23, 1, 24, 7, 25, 17, 26, 1, 27, 11, 28, 19, 29, 1, 60, 1, 31, 21, 32, 13, 33, 1, 34, 23, 70, 1, 36, 1, 37, 25, 38, 11, 39, 1, 40, 27, 41
OFFSET
2,3
LINKS
FORMULA
a(n) = gcd(n, lcm(dd(n))), where dd(n) is the first difference of divisors (ordered by size).
EXAMPLE
If n is prime p, then A060766(p) = p-1 and lcm(p, p-1) = 1. If n=2k then a(2k)=k or as an "anomaly", a(2k)=2k.
At n=30, D={1, 2, 3, 5, 6, 10, 15, 30}, dD={1, 1, 2, 1, 4, 5, 15}={1, 2, 4, 5, 15}, lcm(dD)=60, gcd(n, lcm(dD(n))) = gcd(30, 60) = 30 = n.
At n=36, D={1, 2, 3, 4, 6, 9, 12, 18, 36}, dD={1, 1, 1, 2, 3, 3, 6, 18}={1, 2, 3, 6, 18}, lcm(dD)=18, gcd(n, lcm(dD(n))) = gcd(36, 18) = 18 = n/2.
MAPLE
A060766:= proc(n) local F; F:= sort(convert(numtheory:-divisors(n), list));
ilcm(op(F[2..-1] - F[1..-2])) end proc:
seq(igcd(n, A060766(n)), n=2..100); # Robert Israel, Dec 20 2015
MATHEMATICA
Table[GCD[n, LCM @@ Differences@ Divisors@ n], {n, 2, 82}] (* Michael De Vlieger, Dec 20 2015 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 25 2001
STATUS
approved