OFFSET
2,3
LINKS
Robert Israel, Table of n, a(n) for n = 2..10000
FORMULA
a(n) = gcd(n, lcm(dd(n))), where dd(n) is the first difference of divisors (ordered by size).
EXAMPLE
If n is prime p, then A060766(p) = p-1 and lcm(p, p-1) = 1. If n=2k then a(2k)=k or as an "anomaly", a(2k)=2k.
At n=30, D={1, 2, 3, 5, 6, 10, 15, 30}, dD={1, 1, 2, 1, 4, 5, 15}={1, 2, 4, 5, 15}, lcm(dD)=60, gcd(n, lcm(dD(n))) = gcd(30, 60) = 30 = n.
At n=36, D={1, 2, 3, 4, 6, 9, 12, 18, 36}, dD={1, 1, 1, 2, 3, 3, 6, 18}={1, 2, 3, 6, 18}, lcm(dD)=18, gcd(n, lcm(dD(n))) = gcd(36, 18) = 18 = n/2.
MAPLE
A060766:= proc(n) local F; F:= sort(convert(numtheory:-divisors(n), list));
ilcm(op(F[2..-1] - F[1..-2])) end proc:
seq(igcd(n, A060766(n)), n=2..100); # Robert Israel, Dec 20 2015
MATHEMATICA
Table[GCD[n, LCM @@ Differences@ Divisors@ n], {n, 2, 82}] (* Michael De Vlieger, Dec 20 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 25 2001
STATUS
approved