login
A135051
Pyramid game person numbers that have integer solutions.
1
7, 79, 191, 407, 631, 991, 1327, 1831, 2279, 2927, 3487, 4279, 4951, 5887, 6671, 7751, 8647, 9871, 10879, 12247, 13367, 14879, 16111, 17767, 19111, 20911, 22367, 24311, 25879, 27967, 29647, 31879, 33671, 36047, 37951, 40471, 42487, 45151, 47279, 50087, 52327, 55279, 57631, 60727, 63191, 66431, 69007, 72391, 75079, 78607
OFFSET
1,1
COMMENTS
This result comes from looking for "perfect Pyramids" which is equivalent to finding m values that satisfy m(m + 1)/2 + 1 - n == 0, for each n value.
Integer solutions have the form such that 2*sqrt( -7 + 8*n), is an integer, and Mod[n - 7, 8], are equivalent to zero, simultaneously.
LINKS
FORMULA
From Colin Barker, Apr 30 2012: (Start)
Conjecture: a(n) = 9 - 2*(-1)^n + 4*(-8+(-1)^n)*n + 32*n^2.
Conjecture: G.f.: x*(7 + 72*x + 98*x^2 + 72*x^3 + 7*x^4)/((1-x)^3*(1+x)^2). (End)
MATHEMATICA
Flatten[Table[If[ IntegerQ[2*Sqrt[ -7 + 8*n]] && Mod[n - 7, 8] == 0, n, {}], {n, 1, 10000}]]
CROSSREFS
Sequence in context: A140613 A139945 A023285 * A201860 A176130 A014232
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Jan 31 2008
EXTENSIONS
a(19) to a(50) added and comments edited by G. C. Greubel, Sep 21 2016
STATUS
approved