login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135055
Pentanacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) for n>4 and with a(0)=-2, a(1)=-1, a(2)=0, a(3)=1, a(4)=2.
3
-2, -1, 0, 1, 2, 0, 2, 5, 10, 19, 36, 72, 142, 279, 548, 1077, 2118, 4164, 8186, 16093, 31638, 62199, 122280, 240396, 472606, 929119, 1826600, 3591001, 7059722, 13879048, 27285490, 53641861, 105457122, 207323243, 407586764, 801294480, 1575303470, 3096965079, 6088473036, 11969622829
OFFSET
0,1
LINKS
Piezas, Tito III and Weisstein, Eric W., Pentanacci Number
FORMULA
From R. J. Mathar, Nov 18 2007: (Start)
G.f.: (1-2*x)*(x+1)*(2*x^2+x+2)/(-1+x+x^2+x^3+x^4+x^5).
a(n) = -2*A001591(n+4) + A001591(n+3) + 3*A001591(n+2) + 4*A001591(n+1) + 4*A001591(n). (End)
MATHEMATICA
a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4] + a[n - 5]; a[0] = -2; a[1] = -1; a[2] = 0; a[3] = 1; a[4] = 2; Table[a[n], {n, 0, 50}] (* Artur Jasinski, Nov 15 2007 *)
LinearRecurrence[{1, 1, 1, 1, 1}, {-2, -1, 0, 1, 2}, 50] (* G. C. Greubel, Sep 21 2016 *)
PROG
(Magma) I:=[-2, -1, 0, 1, 2]; [n le 5 select I[n] else Self(n-1)+Self(n-2)+Self(n-3)+Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Sep 22 2016
CROSSREFS
Sequence in context: A108964 A036581 A369462 * A265433 A298247 A035148
KEYWORD
sign,easy
AUTHOR
Artur Jasinski, Nov 15 2007
STATUS
approved