login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111963
Inverse of renewal array for central trinomial numbers.
2
1, -1, 1, -1, -2, 1, 3, -1, -3, 1, 1, 8, 0, -4, 1, -9, -3, 14, 2, -5, 1, 1, -26, -15, 20, 5, -6, 1, 27, 27, -45, -37, 25, 9, -7, 1, -13, 76, 98, -56, -70, 28, 14, -8, 1, -81, -135, 108, 228, -46, -114, 28, 20, -9, 1, 67, -202, -459, 48, 420, 0, -168, 24, 27, -10, 1, 243, 567, -135, -1035, -210, 662, 98, -230, 15, 35, -11, 1, -285
OFFSET
0,5
COMMENTS
Row sums have g.f. 1/sqrt(1+4x^2) [alternating sign central binomial numbers with interpolated zeros]. Diagonal sums are A111964. Inverse of A111960. Factors as (1/sqrt(1+4x^2),x/sqrt(1+4x^2))*(1/(1+x),x/(1+x)).
FORMULA
Riordan array (1/(sqrt(1+4x^2)+x), x/(sqrt(1+4x^2)+x)); Number triangle T(n, k)=sum{i=0..floor(n/2), C(2i+k-n-1, k)*C((2i-n-1)/2, i)(-1)^n*4^i}.
EXAMPLE
Triangle begins
1;
-1,1;
-1,-2,1;
3,-1,-3,1;
1,8,0,-4,1;
-9,-3,14,2,-5,1;
1,-26,-15,20,5,-6,1;
CROSSREFS
Sequence in context: A108415 A278572 A136644 * A206923 A328570 A078079
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Aug 23 2005
STATUS
approved