login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206923
Number of bisections of the n-th binary palindrome bit pattern until the result is not palindromic
9
1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1
OFFSET
1,3
COMMENTS
Let k=1, p(1)=A006995(n) and m(1)=number of bits in p(1); if p(k) is a binary palindrome > 1 then iterate k=k+1, m(k)=floor((m(k-1)+1)/2), p(k)=leftmost m(k) bits of p(k-1); else set a(n)=k endif.
FORMULA
Recursion: define f(x)=floor(A006995(x)/2^floor(floor(log_2(A006995(x))+1)/2)), for x=1,2,3,...
Case 1: a(n)=1+a(A206915(f(n))), if f(n) is a binary palindrome;
Case 2: a(n)=1, else.
Formally: a(n)=if (A178225(f(n))==1) then a(A206915(f(n)))+1 else 1.
EXAMPLE
a(1)=a(2)=1, since A006995(1)=0 and A006995(2)=1;
a(5)=3, since A006995(5)=7=111_2 and so the iteration is 11==>11==>1;
a(9)=2, since A006995(9)=21=10101_2 and so the iteration is 10101==>101;
a(13)=2, since A006995(13)=45=101101_2 and so the iteration is 101101==>101;
a(15)=4, since A006995(15)=63=111111_2 and so the iteration is 111111==>111==>11==>1;
a(37)=3, since A006995(37)=341=101010101_2 and so the iteration is 101010101==>10101==>101;
PROG
/* quasi-C program fragment, omitting formal details, n>1 */
p=n;
p1=n+1;
k=0;
While (A178225(p)==1) And (p != p1)
{
p1=p;
k++;
m=int(log(p)/log(2));
p=int(p/2^int((m+1)/2));
}
return k;
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Mar 12 2012
STATUS
approved