login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202328
Triangle T(n,k) = coefficient of x^n in expansion of [x(1+x^2)/(1-x^2)]^k = sum(n>=k, T(n,k) x^n).
0
1, 0, 1, 2, 0, 1, 0, 4, 0, 1, 2, 0, 6, 0, 1, 0, 8, 0, 8, 0, 1, 2, 0, 18, 0, 10, 0, 1, 0, 12, 0, 32, 0, 12, 0, 1, 2, 0, 38, 0, 50, 0, 14, 0, 1, 0, 16, 0, 88, 0, 72, 0, 16, 0, 1, 2, 0, 66, 0, 170, 0, 98, 0, 18, 0, 1, 0, 20, 0, 192, 0, 292, 0, 128, 0, 20, 0, 1, 2, 0, 102, 0, 450, 0, 462, 0, 162, 0, 22, 0, 1, 0, 24, 0, 360, 0, 912, 0, 688, 0, 200, 0, 24, 0, 1
OFFSET
1,4
FORMULA
T(n,k)=((sum(i=0..(n-k)/2, binomial(k,(n-k)/2-i)*binomial(k+i-1,k-1)))*((-1)^(n+k)+1))/2.
EXAMPLE
1
0, 1,
2, 0, 1,
0, 4, 0, 1,
2, 0, 6, 0, 1,
0, 8, 0, 8, 0, 1,
2, 0, 18, 0, 10, 0, 1
PROG
(Maxima)
T(n, k):=((sum(binomial(k, (n-k)/2-i)*binomial(k+i-1, k-1), i, 0, (n-k)/2))*((-1)^(n+k)+1))/2
CROSSREFS
Sequence in context: A371093 A053389 A354667 * A136688 A131321 A111959
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Dec 17 2011
STATUS
approved