login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077949
Expansion of 1/(1-x-2*x^3).
15
1, 1, 1, 3, 5, 7, 13, 23, 37, 63, 109, 183, 309, 527, 893, 1511, 2565, 4351, 7373, 12503, 21205, 35951, 60957, 103367, 175269, 297183, 503917, 854455, 1448821, 2456655, 4165565, 7063207, 11976517, 20307647, 34434061, 58387095, 99002389, 167870511, 284644701
OFFSET
0,4
COMMENTS
Row sums of the Riordan array (1, x*(1+2*x^2)). - Paul Barry, Jan 12 2006
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=3, 3*a(n-3) equals the number of 3-colored compositions of n with all parts >=3, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
Number of compositions of n into parts 1 and two sorts of parts 2. - Joerg Arndt, Aug 29 2013
a(n+2) equals the number of words of length n on alphabet {0,1,2}, having at least two zeros between every two successive nonzero letters. - Milan Janjic, Feb 07 2015
Number of pairs of rabbits when there are 2 pairs per litter and offspring reach parenthood after 3 gestation periods; a(n) = a(n-1) + 2*a(n-3), with a(0) = a(1) = a(2) = 1. - Robert FERREOL, Oct 27 2018
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(n-2k, k)*2^k. - Paul Barry, Nov 18 2003
a(n) = Sum_{k=0..n} C(k, floor((n-k)/2))*2^((n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
a(n) = term (1,1) in the 3x3 matrix [1,1,0; 0,0,1; 2,0,0]^n. - Alois P. Heinz, Aug 16 2008
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(2*k+1 + 2*x^2)/( x*(2*k+2 + 2*x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 29 2013
MAPLE
a:= n-> (<<1|1|0>, <0|0|1>, <2|0|0>>^n)[1, 1]:
seq(a(n), n=0..40); # Alois P. Heinz, Aug 16 2008
MATHEMATICA
CoefficientList[Series[1/(1-x-2*x^3), {x, 0, 50}], x] (* Jean-François Alcover, Mar 11 2014 *)
LinearRecurrence[{1, 0, 2}, {1, 1, 1}, 50] (* Robert G. Wilson v, Jul 12 2014 *)
PROG
(PARI) Vec(1/(1-x-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 23 2012
(Magma) [n le 3 select 1 else Self(n-1)+2*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Mar 13 2014
(Sage) (1/(1-x-2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 22 2019
(GAP) a:=[1, 1, 1];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, Jun 22 2019
CROSSREFS
Unsigned version of A077974. Cf. A003229.
Sequence in context: A125272 A127443 A003229 * A077974 A126273 A007658
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved