login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077946
Expansion of 1/(1 - x - 2*x^2 - 2*x^3).
3
1, 1, 3, 7, 15, 35, 79, 179, 407, 923, 2095, 4755, 10791, 24491, 55583, 126147, 286295, 649755, 1474639, 3346739, 7595527, 17238283, 39122815, 88790435, 201512631, 457339131, 1037945263, 2355648787, 5346217575, 12133405675, 27537138399, 62496384899, 141837473047
OFFSET
0,3
COMMENTS
Discarding the first 1 = INVERT transform of [1,2,2,0,0,0,...]. - Gary W. Adamson, Feb 16 2010
FORMULA
a(n) = leftmost term in M^n * [1 0 0], where M = the 3X3 matrix [1 1 1 / 2 0 0 / 0 1 0]. a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3). a(n)/a(n-1) tends to 2.26953084..., an eigenvalue of M and a root of the characteristic polynomial x^3 - x^2 - 2x - 2. a(6) = 79 = 35 + 2*15 + 2*7 = a(5) + 2*a(4) + 2*a(3). - Gary W. Adamson, Dec 21 2004
PROG
(PARI) Vec(1/(1-x-2*x^2-2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Cf. A077970.
Sequence in context: A217092 A153588 A221945 * A077970 A338852 A174284
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved