login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077970
Expansion of 1/(1+x-2*x^2+2*x^3).
4
1, -1, 3, -7, 15, -35, 79, -179, 407, -923, 2095, -4755, 10791, -24491, 55583, -126147, 286295, -649755, 1474639, -3346739, 7595527, -17238283, 39122815, -88790435, 201512631, -457339131, 1037945263, -2355648787, 5346217575, -12133405675, 27537138399, -62496384899, 141837473047
OFFSET
0,3
FORMULA
a(n) = (-1)^n*A077946(n). - R. J. Mathar, Feb 28 2019
MATHEMATICA
CoefficientList[Series[1/(1+x-2x^2+2x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[ {-1, 2, -2}, {1, -1, 3}, 40] (* Harvey P. Dale, Sep 29 2018 *)
PROG
(PARI) Vec(1/(1+x-2*x^2+2*x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1+x-2*x^2+2*x^3) )); // G. C. Greubel, Jun 24 2019
(Sage) (1/(1+x-2*x^2+2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 24 2019
(GAP) a:=[1, 1, -3];; for n in [4..40] do a[n]:=-a[n-1]+2*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 24 2019
CROSSREFS
Sequence in context: A153588 A221945 A077946 * A338852 A174284 A182892
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved