The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077970 Expansion of 1/(1+x-2*x^2+2*x^3). 4
 1, -1, 3, -7, 15, -35, 79, -179, 407, -923, 2095, -4755, 10791, -24491, 55583, -126147, 286295, -649755, 1474639, -3346739, 7595527, -17238283, 39122815, -88790435, 201512631, -457339131, 1037945263, -2355648787, 5346217575, -12133405675, 27537138399, -62496384899, 141837473047 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-1, 2, -2). FORMULA a(n) = (-1)^n*A077946(n). - R. J. Mathar, Feb 28 2019 MATHEMATICA CoefficientList[Series[1/(1+x-2x^2+2x^3), {x, 0, 40}], x] (* or *) LinearRecurrence[ {-1, 2, -2}, {1, -1, 3}, 40] (* Harvey P. Dale, Sep 29 2018 *) PROG (PARI) Vec(1/(1+x-2*x^2+2*x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 26 2012 (MAGMA) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1+x-2*x^2+2*x^3) )); // G. C. Greubel, Jun 24 2019 (Sage) (1/(1+x-2*x^2+2*x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 24 2019 (GAP) a:=[1, 1, -3];; for n in [4..40] do a[n]:=-a[n-1]+2*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 24 2019 CROSSREFS Cf. A077946, A078040. Sequence in context: A153588 A221945 A077946 * A174284 A182892 A124696 Adjacent sequences:  A077967 A077968 A077969 * A077971 A077972 A077973 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 16:42 EST 2020. Contains 331245 sequences. (Running on oeis4.)