OFFSET
1,1
COMMENTS
The series u(n) = 1/log(n)^sqrt(n) is convergent because n^2 * u(n) -> 0 when n -> oo.
REFERENCES
J.-M. Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.1.d p. 247.
FORMULA
Equals Sum_{n>=2} 1/log(n)^sqrt(n).
EXAMPLE
4.372450021106629664550827989755553790410067553197...
MAPLE
evalf(sum(1/(log(n)^sqrt(n), n=2..infinity), 120);
PROG
(PARI) sumpos(n=2, 1/log(n)^sqrt(n)) \\ Michel Marcus, Aug 03 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Aug 02 2020
EXTENSIONS
More terms from Jinyuan Wang, Aug 03 2020
STATUS
approved