login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336741 Decimal expansion of Sum_{n>=2} 1/log(n)^sqrt(n). 2
4, 3, 7, 2, 4, 5, 0, 0, 2, 1, 1, 0, 6, 6, 2, 9, 6, 6, 4, 5, 5, 0, 8, 2, 7, 9, 8, 9, 7, 5, 5, 5, 5, 3, 7, 9, 0, 4, 1, 0, 0, 6, 7, 5, 5, 3, 1, 9, 7, 0, 6, 5, 5, 7, 3, 0, 7, 5, 7, 4, 9, 2, 5, 0, 6, 6, 0, 1, 8, 8, 2, 7, 3, 4, 5, 4, 1, 7, 1, 0, 1, 1, 2, 5, 2, 5, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The series u(n) = 1/log(n)^sqrt(n) is convergent because n^2 * u(n) -> 0 when n -> oo.

REFERENCES

J.-M. Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.1.d p. 247.

LINKS

Table of n, a(n) for n=1..87.

FORMULA

Equals Sum_{n>=2} 1/log(n)^sqrt(n).

EXAMPLE

4.372450021106629664550827989755553790410067553197...

MAPLE

evalf(sum(1/(log(n)^sqrt(n), n=2..infinity), 120);

PROG

(PARI) sumpos(n=2, 1/log(n)^sqrt(n)) \\ Michel Marcus, Aug 03 2020

CROSSREFS

Cf. A099870, A099871, A308915.

Sequence in context: A077955 A077978 A192986 * A072816 A340012 A046548

Adjacent sequences:  A336738 A336739 A336740 * A336742 A336743 A336744

KEYWORD

nonn,cons

AUTHOR

Bernard Schott, Aug 02 2020

EXTENSIONS

More terms from Jinyuan Wang, Aug 03 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 16:37 EDT 2022. Contains 354119 sequences. (Running on oeis4.)