OFFSET
1,2
LINKS
Miloslav Znojil, Non-Hermitian N-state degeneracies: unitary realizations via antisymmetric anharmonicities, arXiv:2010.15014 [quant-ph], 2020.
Miloslav Znojil, Quantum phase transitions mediated by clustered non-Hermitian degeneracies, arXiv:2102.12272 [quant-ph], 2021.
Miloslav Znojil, Quantum phase transitions mediated by clustered non-Hermitian degeneracies, Physical Review E 103 (2021), 032120.
Miloslav Znojil, Bose-Einstein condensation processes with nontrivial geometric multiplicites realized via PT-symmetric and exactly solvable linear-Bose-Hubbard building blocks, arXiv:2108.07110 [quant-ph], 2021.
EXAMPLE
H(n,1) are the sets {1}, {1,3}, {1,3,5}, {1,3,5,7}, ...
H(n,2) are the sets {3}, {3,9}, {3,9,15}, {3,9,15,21}, ...
H(n,3) are the sets {5}, {5,15}, {5,15,25}, {5,15,25,35}, ...
a(2) = 2 because there are two decompositions of H(2,1) = {1,3}: the trivial H(2,1) and H(1,1) + H(1,2) = {1} + {3}.
The a(5) = 6 decompositions of {1,3,5,7,9} are:
{{1,3,5,7,9}},
{{1,3,5,7}, {9}},
{{1,3,5}, {7}, {9}},
{{1,3}, {5}, {7}, {9}},
{{1}, {3}, {5}, {7}, {9}},
{{3,9}, {1}, {5}, {7}}.
PROG
(PARI)
tiles(S, t)={((i, b)->1 + sum(i=1, i, if(!bitnegimply(S[i], b), self()(i-1, b-S[i]))))(#S, t)}
H(j, k)={sum(i=1, j, 1<<((2*k-1)*(2*i-1)))}
a(n)={my(S=concat(vector(n, k, vector(n\(2*k-1), j, H(1+j, k))))); tiles(S, H(n, 1))} \\ Andrew Howroyd, Oct 02 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Miloslav Znojil, Sep 30 2020
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Oct 02 2020
STATUS
approved