The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077912 Expansion of 1/(1+x^2-2*x^3). 4
 1, 0, -1, 2, 1, -4, 3, 6, -11, 0, 23, -22, -23, 68, -21, -114, 157, 72, -385, 242, 529, -1012, -45, 2070, -1979, -2160, 6119, -1798, -10439, 14036, 6843, -34914, 21229, 48600, -91057, -6142, 188257, -175972, -200541, 552486, -151403, -953568, 1256375, 650762, -3163511, 1861988, 4465035 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Equally, expansion of (1-x)^(-1)/(1+x+2*x^2). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0, -1, 2). FORMULA a(0)=1, a(1)=0, a(2)=-1, a(n) = -a(n-2)+2*a(n-3). - Harvey P. Dale, Dec 10 2012 a(n) = (-1)^n * A077963(n). - G. C. Greubel, Jun 23 2019 MATHEMATICA CoefficientList[Series[1/(1+x^2-2*x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, -1, 2}, {1, 0, -1}, 50] (* Harvey P. Dale, Dec 10 2012 *) PROG (PARI) my(x='x+O('x^50)); Vec(1/(1+x^2-2*x^3)) \\ G. C. Greubel, Jun 23 2019 (Magma) R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+x^2-2*x^3) )); // G. C. Greubel, Jun 23 2019 (Sage) (1/(1+x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 23 2019 (GAP) a:=[1, 0, -1];; for n in [4..50] do a[n]:=-a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Jun 23 2019 CROSSREFS Cf. A077963. Sequence in context: A105361 A125154 A281853 * A077963 A114861 A086512 Adjacent sequences: A077909 A077910 A077911 * A077913 A077914 A077915 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 1 04:59 EST 2024. Contains 370430 sequences. (Running on oeis4.)