login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077912
Expansion of 1/(1+x^2-2*x^3).
4
1, 0, -1, 2, 1, -4, 3, 6, -11, 0, 23, -22, -23, 68, -21, -114, 157, 72, -385, 242, 529, -1012, -45, 2070, -1979, -2160, 6119, -1798, -10439, 14036, 6843, -34914, 21229, 48600, -91057, -6142, 188257, -175972, -200541, 552486, -151403, -953568, 1256375, 650762, -3163511, 1861988, 4465035
OFFSET
0,4
COMMENTS
Equally, expansion of (1-x)^(-1)/(1+x+2*x^2).
FORMULA
a(0)=1, a(1)=0, a(2)=-1, a(n) = -a(n-2)+2*a(n-3). - Harvey P. Dale, Dec 10 2012
a(n) = (-1)^n * A077963(n). - G. C. Greubel, Jun 23 2019
MATHEMATICA
CoefficientList[Series[1/(1+x^2-2*x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, -1, 2}, {1, 0, -1}, 50] (* Harvey P. Dale, Dec 10 2012 *)
PROG
(PARI) my(x='x+O('x^50)); Vec(1/(1+x^2-2*x^3)) \\ G. C. Greubel, Jun 23 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+x^2-2*x^3) )); // G. C. Greubel, Jun 23 2019
(Sage) (1/(1+x^2-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 23 2019
(GAP) a:=[1, 0, -1];; for n in [4..50] do a[n]:=-a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Jun 23 2019
CROSSREFS
Cf. A077963.
Sequence in context: A370728 A125154 A281853 * A077963 A114861 A086512
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved