login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281853
Expansion of Sum_{k>=2} x^prime(k) / (1 - Sum_{k>=2} x^prime(k))^2.
0
0, 0, 1, 0, 1, 2, 1, 4, 3, 6, 10, 8, 19, 22, 26, 48, 53, 78, 112, 136, 205, 264, 354, 504, 639, 890, 1204, 1568, 2173, 2868, 3826, 5192, 6839, 9214, 12295, 16296, 21894, 28996, 38624, 51552, 68230, 90930, 120715, 159988, 212728, 281696, 373574, 495312, 655365, 868510, 1149161, 1520020, 2011591, 2658416, 3514446
OFFSET
1,6
COMMENTS
Total number of parts in all compositions (ordered partitions) of n into odd primes (A065091).
FORMULA
G.f.: Sum_{k>=2} x^prime(k) / (1 - Sum_{k>=2} x^prime(k))^2.
EXAMPLE
a(11) = 10 because we have [11], [5, 3, 3], [3, 5, 3], [3, 3, 5] and 1 + 3 + 3 + 3 = 10.
MATHEMATICA
nmax = 55; Rest[CoefficientList[Series[Sum[x^Prime[k], {k, 2, nmax}]/(1 - Sum[x^Prime[k], {k, 2, nmax}])^2, {x, 0, nmax}], x]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 31 2017
STATUS
approved