|
|
A077910
|
|
Expansion of 1/((1-x)*(1+x+2*x^2-2*x^3)).
|
|
1
|
|
|
1, 0, -1, 4, -1, -8, 19, -4, -49, 96, -5, -284, 487, 72, -1613, 2444, 927, -9040, 12075, 7860, -50089, 58520, 57379, -274596, 276879, 387072, -1490021, 1269636, 2484551, -8003864, 5574035, 15402796, -42558593, 22901072, 93021707, -223941036, 83699767, 550225720, -1165507325
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1-x)*(1+x+2x^2-2x^3)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 12 2017 *)
LinearRecurrence[{0, -1, 4, -2}, {1, 0, -1, 4}, 40] (* G. C. Greubel, Jul 02 2019 *)
|
|
PROG
|
(PARI) my(x='x+O('x^40)); Vec(1/((1-x)*(1+x+2*x^2-2*x^3))) \\ G. C. Greubel, Jul 02 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)*(1+x+2*x^2-2*x^3)) )); // G. C. Greubel, Jul 02 2019
(Sage) (1/((1-x)*(1+x+2*x^2-2*x^3))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 02 2019
(GAP) a:=[1, 0, -1, 4];; for n in [5..40] do a[n]:=-a[n-2]+4*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jul 02 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|