login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077910
Expansion of 1/((1-x)*(1+x+2*x^2-2*x^3)).
1
1, 0, -1, 4, -1, -8, 19, -4, -49, 96, -5, -284, 487, 72, -1613, 2444, 927, -9040, 12075, 7860, -50089, 58520, 57379, -274596, 276879, 387072, -1490021, 1269636, 2484551, -8003864, 5574035, 15402796, -42558593, 22901072, 93021707, -223941036, 83699767, 550225720, -1165507325
OFFSET
0,4
MATHEMATICA
CoefficientList[Series[1/((1-x)*(1+x+2x^2-2x^3)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 12 2017 *)
LinearRecurrence[{0, -1, 4, -2}, {1, 0, -1, 4}, 40] (* G. C. Greubel, Jul 02 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec(1/((1-x)*(1+x+2*x^2-2*x^3))) \\ G. C. Greubel, Jul 02 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)*(1+x+2*x^2-2*x^3)) )); // G. C. Greubel, Jul 02 2019
(Sage) (1/((1-x)*(1+x+2*x^2-2*x^3))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 02 2019
(GAP) a:=[1, 0, -1, 4];; for n in [5..40] do a[n]:=-a[n-2]+4*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jul 02 2019
CROSSREFS
Sequence in context: A299583 A013611 A297194 * A366399 A100235 A089072
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved