The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077910 Expansion of 1/((1-x)*(1+x+2*x^2-2*x^3)). 1
 1, 0, -1, 4, -1, -8, 19, -4, -49, 96, -5, -284, 487, 72, -1613, 2444, 927, -9040, 12075, 7860, -50089, 58520, 57379, -274596, 276879, 387072, -1490021, 1269636, 2484551, -8003864, 5574035, 15402796, -42558593, 22901072, 93021707, -223941036, 83699767, 550225720, -1165507325 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,-1,4,-2). MATHEMATICA CoefficientList[Series[1/((1-x)*(1+x+2x^2-2x^3)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 12 2017 *) LinearRecurrence[{0, -1, 4, -2}, {1, 0, -1, 4}, 40] (* G. C. Greubel, Jul 02 2019 *) PROG (PARI) my(x='x+O('x^40)); Vec(1/((1-x)*(1+x+2*x^2-2*x^3))) \\ G. C. Greubel, Jul 02 2019 (Magma) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)*(1+x+2*x^2-2*x^3)) )); // G. C. Greubel, Jul 02 2019 (Sage) (1/((1-x)*(1+x+2*x^2-2*x^3))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 02 2019 (GAP) a:=[1, 0, -1, 4];; for n in [5..40] do a[n]:=-a[n-2]+4*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jul 02 2019 CROSSREFS Sequence in context: A299583 A013611 A297194 * A366399 A100235 A089072 Adjacent sequences: A077907 A077908 A077909 * A077911 A077912 A077913 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 01:55 EST 2023. Contains 367530 sequences. (Running on oeis4.)