login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077910 Expansion of 1/((1-x)*(1+x+2*x^2-2*x^3)). 1
1, 0, -1, 4, -1, -8, 19, -4, -49, 96, -5, -284, 487, 72, -1613, 2444, 927, -9040, 12075, 7860, -50089, 58520, 57379, -274596, 276879, 387072, -1490021, 1269636, 2484551, -8003864, 5574035, 15402796, -42558593, 22901072, 93021707, -223941036, 83699767, 550225720, -1165507325 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,-1,4,-2).

MATHEMATICA

CoefficientList[Series[1/((1-x)*(1+x+2x^2-2x^3)), {x, 0, 40}], x] (* Harvey P. Dale, Sep 12 2017 *)

LinearRecurrence[{0, -1, 4, -2}, {1, 0, -1, 4}, 40] (* G. C. Greubel, Jul 02 2019 *)

PROG

(PARI) my(x='x+O('x^40)); Vec(1/((1-x)*(1+x+2*x^2-2*x^3))) \\ G. C. Greubel, Jul 02 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)*(1+x+2*x^2-2*x^3)) )); // G. C. Greubel, Jul 02 2019

(Sage) (1/((1-x)*(1+x+2*x^2-2*x^3))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 02 2019

(GAP) a:=[1, 0, -1, 4];; for n in [5..40] do a[n]:=-a[n-2]+4*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jul 02 2019

CROSSREFS

Sequence in context: A299583 A013611 A297194 * A100235 A089072 A036177

Adjacent sequences:  A077907 A077908 A077909 * A077911 A077912 A077913

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 16:58 EDT 2021. Contains 345144 sequences. (Running on oeis4.)