OFFSET
0,3
COMMENTS
T(n,k) equals the number of n-length words on {0,1,2,3,4} having n-k zeros. - Milan Janjic, Jul 24 2015
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1034 (rows 0..44 flattened, missing terms added by Sean A. Irvine, Apr 21 2019)
J. Goldman, J. Haglund, Generalized rook polynomials, J. Combin. Theory A91 (2000), 509-530, 1-rook coefficients for k rooks on the 4xn board, all heights 4.
FORMULA
G.f.: 1 / (1 - x(1+4y)).
T(n,k) = 4^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*3^(n-i). Row sums are 5^n = A000351. - Mircea Merca, Apr 28 2012
EXAMPLE
Triangle begins
1;
1, 4;
1, 8, 16;
1, 12, 48, 64;
1, 16, 96, 256, 256;
1, 20, 160, 640, 1280, 1024;
1, 24, 240, 1280, 3840, 6144, 4096;
MAPLE
T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+4*x)^n):
seq(T(n), n=0..10); # Alois P. Heinz, Jul 24 2015
MATHEMATICA
Flatten[Table[CoefficientList[Series[(1+4x)^n, {x, 0, 10}], x], {n, 0, 15}]] (* Harvey P. Dale, Oct 10 2011 *)
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved