OFFSET
0,3
COMMENTS
T(n,k) equals the number of n-length words on {0,1,...,7} having n-k zeros. - Milan Janjic, Jul 24 2015
FORMULA
G.f.: 1 / (1 - x(1+7y)).
T(n,k) = 7^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*6^(n-i). Row sums are 8^n = A001018. - Mircea Merca, Apr 28 2012
EXAMPLE
Triangle starts:
1;
1, 7;
1, 14, 49;
1, 21, 147, 343;
1, 28, 294, 1372, 2401;
1, 35, 490, 3430, 12005, 16807;
...
MAPLE
T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+7*x)^n):
seq(T(n), n=0..10); # Alois P. Heinz, Jul 24 2015
MATHEMATICA
T[n_, k_] := 7^k*Binomial[n, k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 23 2016 *)
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved