login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A040055
Continued fraction for sqrt(63).
4
7, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1, 14, 1
OFFSET
0,1
FORMULA
From Amiram Eldar, Nov 13 2023: (Start)
Multiplicative with a(2^e) = 14, and a(p^e) = 1 for p >= 5.
Dirichlet g.f.: zeta(s) * (1 + 13/2^s). (End)
EXAMPLE
7.9372539331937717715048472... = 7 + 1/(1 + 1/(14 + 1/(1 + 1/(14 + ...)))). - Harry J. Smith, Jun 07 2009
MAPLE
Digits := 100: convert(evalf(sqrt(N)), confrac, 90, 'cvgts'):
MATHEMATICA
ContinuedFraction[Sqrt[63], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2011 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 25000); x=contfrac(sqrt(63)); for (n=0, 20000, write("b040055.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 07 2009
CROSSREFS
Cf. A010516 (decimal expansion), A020820 (decimal expansion of 1/sqrt(63)).
Sequence in context: A203810 A225017 A268919 * A317016 A348983 A013614
KEYWORD
nonn,cofr,easy,mult
STATUS
approved