login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098081
a[n]=1+1/Log[Gamma[2-a[n-1]]]:
0
0, 7, 1, 18, 0, 55, 1, 295, 0, 2412, 1, 28397, 0, 455264, 1, 9487328, 0, 247621547
OFFSET
0,2
COMMENTS
My idea is to invent a fractional Lyapunov exponent: L(s)=Sum[ Log[Abs[ d^sx[n]/dt^s]],{n,1,m}]/m where: Gamma[2]=1 d^sx[n]/dt^s=Gamma[2]*x[n]^(1-s)/Gamma[2-s] Or L(s)=Sum[ Log[Abs[x[n]^(1-s)/Gamma[2-s]],{n,1,m}]/m If the average of x[n] is one then or Log[1]=0: L[s]=Log[Gamma[2-s]] which is always negative since: 0<=Gamma[2-s]<=1 on 0<=s<=1 which gives a Kaplan -Yorke dimension of: (d0 the topological dimension) if the other exponents are one dky(s)=d0+1/Log[Gamma[2-s]] Which gives a roughness gap in the range: s'=1+1/Log[Gamma[2-s]]
REFERENCES
Kiran M. Kolwankar and Anil D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos 6 (1996), 505-513.
MATHEMATICA
Clear[s, n, digits] s[n_]:=1+1/Log[Gamma[2-s[n-1]]]; s[1]=0.6 digits=18 a=Table[Floor[Abs[s[n]]], {n, 1, digits}] ListPlot[a, PlotJoined->True, PlotRange->All, Axes-> False]
CROSSREFS
Sequence in context: A348983 A013614 A179530 * A125234 A028325 A245484
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 13 2004
STATUS
approved