login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125234
Triangle T(n,k) read by rows: the k-th column contains the k-fold iterated partial sum of A000566.
3
1, 7, 1, 18, 8, 1, 34, 26, 9, 1, 55, 60, 35, 10, 1, 81, 115, 95, 45, 11, 1, 112, 196, 210, 140, 56, 12, 1, 148, 308, 406, 350, 196, 68, 13, 1, 189, 456, 714, 756, 546, 264, 81, 14, 1, 235, 645, 1170, 1470, 1302, 810, 345, 95, 15, 1, 286, 880, 1815, 2640, 2772, 2112, 1155, 440, 110, 16, 1
OFFSET
1,2
COMMENTS
The leftmost column contains the heptagonal numbers A000566.
The adjacent columns to the right are A002413, A002418, A027800, A051946, A050484.
Row sums = 1, 8, 27, 70, 161, 348, 727, ... = 6*(2^n-1)-5*n.
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, 1966, p. 189.
FORMULA
T(n,0) = A000566(n). T(n,k) = T(n-1,k) + T(n-1,k-1), k>0.
EXAMPLE
First few rows of the triangle are:
1;
7, 1;
18, 8, 1;
34, 26, 9, 1;
55, 60, 35, 10, 1;
81, 115, 95, 45, 11, 1;
112, 196, 210, 140, 56, 12, 1;
Example: T(6,2) = 95 = 35 + 60 = T(5,2) + T(5,1).
MAPLE
A000566 := proc(n) n*(5*n-3)/2 ; end: A125234 := proc(n, k) if k = 0 then A000566(n); elif k>= n then 0 ; else procname(n-1, k-1)+procname(n-1, k) ; fi; end: seq(seq(A125234(n, k), k=0..n-1), n=1..16) ; # R. J. Mathar, Sep 09 2009
MATHEMATICA
A000566[n_] := n(5n-3)/2;
T[n_, k_] := Which[k == 0, A000566[n], k >= n, 0, True, T[n-1, k-1] + T[n-1, k] ];
Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Oct 26 2023, after R. J. Mathar *)
CROSSREFS
Analogous triangles for the hexagonal and pentagonal numbers are A125233 and A125232.
Sequence in context: A013614 A179530 A098081 * A028325 A245484 A215503
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 24 2006
EXTENSIONS
Edited and extended by R. J. Mathar, Sep 09 2009
STATUS
approved