Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 26 2023 10:20:14
%S 1,7,1,18,8,1,34,26,9,1,55,60,35,10,1,81,115,95,45,11,1,112,196,210,
%T 140,56,12,1,148,308,406,350,196,68,13,1,189,456,714,756,546,264,81,
%U 14,1,235,645,1170,1470,1302,810,345,95,15,1,286,880,1815,2640,2772,2112,1155,440,110,16,1
%N Triangle T(n,k) read by rows: the k-th column contains the k-fold iterated partial sum of A000566.
%C The leftmost column contains the heptagonal numbers A000566.
%C The adjacent columns to the right are A002413, A002418, A027800, A051946, A050484.
%C Row sums = 1, 8, 27, 70, 161, 348, 727, ... = 6*(2^n-1)-5*n.
%D Albert H. Beiler, Recreations in the Theory of Numbers, Dover, 1966, p. 189.
%F T(n,0) = A000566(n). T(n,k) = T(n-1,k) + T(n-1,k-1), k>0.
%e First few rows of the triangle are:
%e 1;
%e 7, 1;
%e 18, 8, 1;
%e 34, 26, 9, 1;
%e 55, 60, 35, 10, 1;
%e 81, 115, 95, 45, 11, 1;
%e 112, 196, 210, 140, 56, 12, 1;
%e Example: T(6,2) = 95 = 35 + 60 = T(5,2) + T(5,1).
%p A000566 := proc(n) n*(5*n-3)/2 ; end: A125234 := proc(n,k) if k = 0 then A000566(n); elif k>= n then 0 ; else procname(n-1,k-1)+procname(n-1,k) ; fi; end: seq(seq(A125234(n,k),k=0..n-1),n=1..16) ; # _R. J. Mathar_, Sep 09 2009
%t A000566[n_] := n(5n-3)/2;
%t T[n_, k_] := Which[k == 0, A000566[n], k >= n, 0, True, T[n-1, k-1] + T[n-1, k] ];
%t Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 11}] // Flatten (* _Jean-François Alcover_, Oct 26 2023, after _R. J. Mathar_ *)
%Y Cf. A000566, A002413, A002418, A027800, A051946, A050484.
%Y Analogous triangles for the hexagonal and pentagonal numbers are A125233 and A125232.
%K nonn,tabl
%O 1,2
%A _Gary W. Adamson_, Nov 24 2006
%E Edited and extended by _R. J. Mathar_, Sep 09 2009