OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 18 2005
Equals row sums of triangle A143130, and binomial transform of {1, 10, 35, 60, 55, 26, 5, 0, 0, 0, ...}. - Gary W. Adamson, Jul 27 2008
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p.233, # 5).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = binomial(n+5,5)*(5*n+6)/6.
a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(5*n+6)/720. - Emeric Deutsch, Jun 18 2005
a(n) = A034264(n+1). - R. J. Mathar, Oct 14 2008
MAPLE
a:=n->(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(5*n+6)/720: seq(a(n), n=0..35); # Emeric Deutsch
MATHEMATICA
CoefficientList[Series[(1+4x)/(1-x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
PROG
(Magma) [(5*n+6)*Binomial(n+5, 5)/6: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
(PARI) vector(40, n, (5*n+1)*binomial(n+4, 5)/6) \\ G. C. Greubel, Aug 28 2019
(Sage) [(5*n+6)*binomial(n+5, 5)/6 for n in (0..40)] # G. C. Greubel, Aug 28 2019
(GAP) List([0..40], n-> (5*n+6)*Binomial(n+5, 5)/6); # G. C. Greubel, Aug 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Barry E. Williams, Dec 20 1999
EXTENSIONS
Corrected and extended by Emeric Deutsch, Jun 18 2005
STATUS
approved