|
|
A125233
|
|
Triangle T(n,k) read by rows, the (n-k)-th term of the k times repeated partial sum of the hexagonal numbers, 0 <= k < n, 0 < n.
|
|
4
|
|
|
1, 6, 1, 15, 7, 1, 28, 22, 8, 1, 45, 50, 30, 9, 1, 66, 95, 80, 39, 10, 1, 91, 161, 175, 119, 49, 11, 1, 120, 252, 336, 294, 168, 60, 12, 1, 153, 372, 588, 630, 462, 228, 72, 13, 1, 190, 525, 960, 1218, 1092, 690, 300, 85, 14, 1, 231, 715, 1485, 2178, 2310, 1782, 990, 385
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Row sums = (1, 7, 23, 59, 135, 291, ...) = A126284.
A125232 is the analogous triangle for the pentagonal numbers.
|
|
REFERENCES
|
Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1964, p. 189.
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
First few rows of the triangle:
1;
6, 1;
15, 7, 1;
28, 22, 8, 1;
45, 50, 30, 9, 1;
66, 95, 80, 39, 10, 1;
91, 161, 175, 119, 49, 11, 1;
...
Example: (5,3) = 80 = 30 + 50 = (4,3) + (4,2).
|
|
MAPLE
|
A000384Psum:= proc(n, k) coeftayl( x*(1+3*x)/(1-x)^(3+k), x=0, n) ; end: A125233 := proc(n, k) A000384Psum(n-k, k) ; end: for n from 1 to 15 do for k from 0 to n -1 do printf("%d, ", A125233(n, k)) ; od: od: # R. J. Mathar, May 03 2008
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|