OFFSET
0,3
COMMENTS
In base 2 consider the numbers 0.1111111..., 0.01010101...., 0.001001001..., 0.000100010001.... where the period [0 k times, 1], where k=0,1,2,3,.... Then convert to base 10. The sequence gives the length of each period.
The period length of the fraction 1/A000225(n) = 1/(2^n-1) for n>0. - Robert G. Wilson v, Mar 30 2008
MATHEMATICA
f[n_] := Length[RealDigits[Sum[2^(-n*k), {k, Infinity}]][[1, 1]]]; Array[f, 36] (* Robert G. Wilson v, Mar 30 2008 *)
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Paolo P. Lava & Giorgio Balzarotti, Mar 19 2008
EXTENSIONS
More terms from Robert G. Wilson v, Mar 30 2008
STATUS
approved